The Future Challenges of Anaerobic Membrane Bioreactor (AnMBR) for High Strength Wastewater
DOI:
https://doi.org/10.11113/amst.v25n3.226Keywords:
Anaerobic membrane bioreactor (AnMBR), operating condition, removal efficiency, anti-fouling; hybrid processAbstract
This article is to present a review of anaerobic membrane bioreactor (AnMBR), process, operational condition, fouling mechanism and future challenge for high strength wastewater. Since1969s, membrane filtration technology has been used and continuously developed for wastewater treatment and recovery. AnMBR has proposed for the economic feasibility owing to the low footprint, high yield production under the relatively low energy consumption. Continuous stirred tank reactor (CSTR) configuration is the widely used couple with a flat sheet or hollow fibre modules. The various factors of operating condition are influence on the performance such as hydraulic retention time (HRT= 6 – 12 d), solid retention time (SRT > 100 d) and operating temperature (T = 10 - 56oC). In addition, the increase in temperature is related to high methanogenic activity and high COD removal efficiency (85% - 99%). However, the limitation of this process is fouling that occurs from the soluble microbial product (SMP), exopolymer substance (EPS) and biopolymer cluster (BPC). Almost of appropriate operating conditions for high performance, anti-fouling, the majority of effective microorganisms and energy balance are discussed in detail. For the challenge work, improvement of the prevention membrane fouling and high energy recovery in the hybrid/combination system with forward osmosis (FO), membrane distillation (MD) and powder activated carbon (PAC)-AnMBR.
Downloads
Published
How to Cite
Issue
Section
License
Copyright of articles that appear in Journal of Applied Membrane Science & Technology belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.