Transport Behavior in Polymer-Inorganic Membrane: A Review
DOI:
https://doi.org/10.11113/amst.v19i1.22Abstract
The polymer–inorganic composite membrane has emerged as an alternative to improve the separation properties of polymer membranes because they possess properties of both organic and inorganic membranes such as good hydrophilicity, selectivity, permeability, mechanical strength, and thermal and chemical stability. A unique combination of organic and inorganic properties is believed could overcome the limitations of the pure polymeric membranes. Transport behavior of gases, vapours and liquids through polymer membranes are important in ultrafiltration, nanofiltration, pervaporation, gas separation and fuel cell applications. A better understanding of transport mechanisms in polymer-inorganic composite membranes is highly important in order to achieve significant achievement in the respective applications. This article provides a detailed review of current research in the field of transport phenomena on the transport behaviour of proton and methanol through the polymeric-inorganic by means of proton conductivity and methanol permeability.References
G. Acres. 2001. Recent advances in fuel cell technology and its applications. J. Power Sources. 100: 60–66.
A. Boudghene Stambouli and E. Traversa. 2002. Fuel cells, an alternative to standard sources of energy. Renew. Sustain. Energy Rev. 6:295–304.
A. Demirbas. 2008. Direct Use of Methanol in Fuel Cells. Energy Sources, Part A Recover. Util. Environ. Eff. 30:529–535.
V. S. Silva, J. Schirmer, R. Reissner, B. Ruffmann, H. Silva, A. Mendes, L. M. Madeira, S. P. Nunes, and Y. A. Gallego. 2005. Proton electrolyte membrane properties and direct methanol fuel cell performance. J. Power Sources. 140:34–40.
Z. Gaowen and Z. Zhentao.2005. Organic/inorganic composite membranes for application in DMFC. J. Memb. Sci. 261:107–113.
T. Yang and C. Liu. 2011. SPEEK/sulfonated cyclodextrin blend membranes for direct methanol fuel cell. Int. J. Hydrogen Energy. 36:5666–5674.
A. S. Aricò, V. Baglio, and V. Antonucci. 2009. Direct Methanol Fuel Cells : History , Status and Perspectives. In H. Liu and J. Zhang (Eds.). Electrocatalysis of Direct Methanol Fuel Cells. Weinhem: Verlag GmbH & Co.
B. L. Garcia and J. W. Weidner. 1990. Review of Direct Methanol Fuel Cells. J. Power Sources. 5: 229-284.
C. Karthikeyan, S. Nunes, L. Prado, M. Ponce, H. Silva, B. Ruffmann, and K. Schulte. 2005. Polymer nanocomposite
membranes for DMFC application. J. Memb. Sci. 254:139–146.
R. Gosalawit, S. Chirachanchai, S. Shishatskiy, and S. P. Nunes. 2008. Sulfonated montmorillonite/sulfonated poly(ether ether ketone) (SMMT/SPEEK) nanocomposite membrane for direct methanol fuel cells (DMFCs). J. Memb. Sci. 323:337–346.
M. N. A. M. Norddin, A. F. Ismail, D. Rana, T. Matsuura, A. Mustafa, and A. Tabe-Mohammadi.2008.Characterization and performance of proton exchange membranes for direct methanol fuel cell: Blending of sulfonated poly(ether ether ketone) with charged surface modifying macromolecule. J. Memb. Sci.. 323:404–413.
M. A. Hickner. 2003. Transport and Structure in Fuel Cell Proton Exchange Membranes Transport and Structure in Fuel Cell Proton Exchange Membranes. Virginia Polytechnic Institute and State University. PhD. Thesis.
B. P. Tripathi and V. K. Shahi. 2011.Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Prog. Polym. Sci. 36:945–979.
S. P. Nunes, B. Ruffmann, E. Rikowski, S. Vetter, and K. Richau. 2002. Inorganic Modification of Proton Conductive Polymer Membranes for Direct Methanol Fuel Cell. J. Memb. Sci. 203:215–225.
J. Wootthikanokkhan and N. Seeponkai. 2006. Methanol permeability and properties of DMFC membranes based on sulfonated PEEK/PVDF blends. J. Appl. Polym. Sci. 102:5941–5947.
S. Byun, Y. Jeong, J. Park, S. Kim, H. Ha, and W. Kim. 2006. Effect of solvent and crystal size on the selectivity of ZSM-5/Nafion composite membranes fabricated by solution-casting method. Solid State Ionics. 177:3233–3243.
Y. Kim, J. S. Lee, C. H. Rhee, H. K. Kim, and H. Chang, 2006. Montmorillonite functionalized with perfluorinated sulfonic acid for proton-conducting organic–inorganic composite membranes. J. Power Sources, 162: 180–185.
Y. F. Lin, C. Y. Yen, C. H. Hung, Y. H. Hsiao, and C. C. M. Ma. 2007. A novel composite membranes based on sulfonated montmorillonite modified Nafion for DMFCs. J. Power Sources. 168:162–166.
M. Helen, B. Viswanathan, and S. Murthy. 2007. Synthesis and characterization of composite membranes based on α-zirconium phosphate and silicotungstic acid. J. Memb. Sci. 292: 98–105.
J. Wee. 2007. Applications of proton exchange membrane fuel cell systems. Renew. Sustain. Energy Rev., 11:1720–1738.
J. G. Wijmans and R. W. Baker. 1995. The solution-diffusion model: a review. J. Memb. Sci. 107: 1–21.
V. C. Souza and M. G. N. Quadri. 2013. Organic-Inorganic Hybrid Membranes In Separation Processes : A 10-Year Review. Brazilian J. Chem. Eng. 30: 683–700.
A. L. Zydney. 2011. High Performance Ultrafiltration Membranes: Pore Geometry and Charge Effects. Inorganic, Polym. Compos. Membr. Struct. Funct. Other Correl. 14: 333.
T. Okada, M. Yoshikawa, and T. Matsuura. 1991. A study on the pervaporation of ethanol/water mixtures on the basis of pore flow model. J. Memb. Sci. 59: 151–168.
W. Jiang. 1999. Preparation and characterization of pore-filled cation-exchange membranes. McMaster University, Hamilton, Ontario. PhD. Thesis.
S. H. Park, J. S. Park, S. D. Yim, Y. M. Lee, and C. S. Kim. 2008. Preparation of organic/inorganic composite membranes using two types of polymer matrix via a sol–gel process. J. Power Sources. 181: 259–266.
H. Kim and H. Chang. 2007. Organic/inorganic hybrid membranes for direct methanol fuel cells. J. Memb. Sci. 288: 188–194.
B. Libby. 2001. Improving selectivity in methanol fuel cell membranes : A study of a polymer-zeolite composite membrane. University of Minnesota. PhD. Thesis.
B. Libby, W. H. Smyrl, and E. L. Cussler. 2003. Polymer-zeolite composite membranes for direct methanol fuel cells. AIChE J. 49: 991–1001.
S. M. Zaidi, S. Mikhailenko, G. Robertson, M. Guiver, and S. Kaliaguine. 2000. Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications. J. Memb. Sci. 173: 17–34.
M. Ponce, L. Prado, B. Ruffmann, K. Richau, R. Mohr, and S. Nunes. 2003. Reduction of methanol permeability in polyetherketone–heteropolyacid membranes. J. Memb. Sci. 217: 5–15.
B. Ruffmann. 2003. Organic/inorganic composite membranes for application in DMFC. Solid State Ionics. 162: 269–275.
M. M. Hasani-Sadrabadi, E. Dashtimoghadam, K. Sarikhani, F. S. Majedi, and G. Khanbabaei. 2010. Electrochemical investigation of sulfonated poly(ether ether ketone)/clay nanocomposite membranes for moderate temperature fuel cell applications. J. Power Sources. 195: 2450–2456.
M. Bello, S. M. J. Zaidi, and S. U. Rahman. 2008. Proton and methanol transport behavior of SPEEK/TPA/MCM-41 composite membranes for fuel cell application. J. Memb. Sci. 322:218–224.
M. H. D. Othman, A. F. Ismail, and A. Mustafa. 2007. Proton conducting composite membrane from sulfonated poly(ether ether ketone) and boron orthophosphate for direct methanol fuel cell application. J. Memb. Sci. 299: 156–165.
B. Mecheri, A. D’Epifanio, E. Traversa, and S. Licoccia. 2008. Sulfonated polyether ether ketone and hydrated tin oxide proton conducting composites for direct methanol fuel cell applications. J. Power Sources, 178: 554–560.
A. F. Ismail, N. H. Othman, and A. Mustafa. 2009. Sulfonated polyether ether ketone composite membrane using tungstosilicic acid supported on silica–aluminium oxide for direct methanol fuel cell (DMFC). J. Memb. Sci. 329: 18–29.
P. Xing, G. P. Robertson, M. D. Guiver, S. D. Mikhailenko, K. Wang, and S. Kaliaguine. 2004. Synthesis and characterization of
sulfonated poly(ether ether ketone) for proton exchange membranes. J. Memb. Sci., 229: 95–106.
D. Q. Vu, W. J. Koros, and S. J. Miller. 2003. Mixed matrix membranes using carbon molecular sieves. J. Memb. Sci. 211: 335–348.
T. T. Moore, R. Mahajan, D. Q. Vu, and W. J. Koros. 2004. Hybrid membrane materials comprising organic polymers with rigid dispersed phases. AIChE J. 50: 311–321.
R. Pal. 2008. Permeation models for mixed matrix membranes. J. Colloid Interface Sci. 317: 191–8.
J. R. Kalnin and E. Kotomin. 1998. Modified Maxwell-Garnett equation for the effective transport coefficients in inhomogeneous media. J. Phys. A. Math. Gen. 31: 7227–7234.
T. S. Chung, L. Y. Jiang, Y. Li, and S. Kulprathipanja. 2007. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 32: 483–507.
P. Bernardo, E. Drioli, and G. Golemme. 2009. Membrane Gas Separation: A Review/State of the Art. Ind. Eng. Chem. Res. 48: 4638–4663.
L. M.Robeson, A. Noshay, M. Matzner, and C. N. Merriam. 1972. Physical Property Characteristics of Polysufone/Poly(dimethylsiloxan) block copolymers. D. Ange. Makro. Chem. 30: 47–62.
R. H. B. Bouma, A. Checchetti, G. Chidichimo, and E. Drioli. 1997. Permeation through a heterogeneous membrane: the Effect Of The Dispersed Phase. J. Memb. Sci. 128: 141–149.
K. A. Mauritz and R. B. Moore. 2004. State Of Understanding Of Nafion. Chem. Rev. 104: 4535–85.
S. Saufi and A. Ismail. 2004. Fabrication Of Carbon Membranes For Gas Separation––A Review. Carbon. 42: 241–259.
Downloads
Published
How to Cite
Issue
Section
License
Copyright of articles that appear in Journal of Applied Membrane Science & Technology belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.