Latest Development of Ionic Liquid Membranes and Their Applications

Authors

  • E. Karthika Department of Chemical Engineering, Puducherry Technological University, India
  • S. Ashok Kumar Department of Chemical Engineering, Puducherry Technological University, India https://orcid.org/0000-0003-1946-2582
  • G. Srinivasan Department of Chemical Engineering, Puducherry Technological University, India

DOI:

https://doi.org/10.11113/amst.v25n1.213

Keywords:

Ionic liquids, gas separation, supported ionic liquid membranes

Abstract

Ionic Liquids (ILs) are semi-solid electrolytes with higher thermal stability, they also have the property of low flammability and slight volatility. Due to its unique properties of this electrolyte, they have wider applications in the field of science. Ionic Liquid Membranes (ILMs) are membranes embedded with ILs. ILMs technology was initiated to meet the low-cost investment on an industrial scale. However, the stability of the membranes depends on the ILs. This paper summarizes the recent fabrication of different types of ILMs along with their applications to various fields and also termed with the limitations to help further researchers in the field of membrane technology.

References

W. Li, C. Molina-Fernández, J. Estager, J.C.M. Monbaliu, D.P. Debecker, P. Luis, Supported ionic liquid membranes for the separation of methanol/dimethyl carbonate mixtures by pervaporation, J Memb Sci. 598 (2020) 1–10. https://doi.org/10.1016/j.memsci.2019.117790.

I. Cichowska-Kopczyńska, M. Joskowska, B. Debski, R. Aranowski, J. Hupka, Separation of toluene from gas phase using supported imidazolium ionic liquid membrane, J Memb Sci. 566 (2018) 367–373. https://doi.org/10.1016/j.memsci.2018.08.058.

V.K. Bhosale, H.K. Chana, S.P. Kamble, P.S. Kulkarni, Separation of nitroaromatics from wastewater by using supported ionic liquid membranes, J Water Process Eng. 32 (2019) 100925. https://doi.org/10.1016/j.jwpe.2019.100925.

Y.F. Liu, Q.Q. Xu, Y.Q. Wang, M.Y. Zhen, J.Z. Yin, Preparation of supported ionic liquid membranes using supercritical fluid deposition based on γ-alumina membrane and imidazolium ionic liquids, J Supercrit Fluids. 139 (2018) 88–96. https://doi.org/10.1016/j.supflu.2018.05.014.

M. Li, W. Zhang, S. Zhou, Y. Zhao, Preparation of poly (vinyl alcohol)/palygorskite-poly (ionic liquids) hybrid catalytic membranes to facilitate esterification, Sep Purif Technol. 230 (2020) 115746. https://doi.org/10.1016/j.seppur.2019.115746.

J. Wang, J. Luo, S. Feng, H. Li, Y. Wan, X. Zhang, Recent development of ionic liquid membranes, Green Energy Environ. 1 (2016) 43–61. https://doi.org/10.1016/j.gee.2016.05.002.

M.Y. Abdelrahim, C.F. Martins, L.A. Neves, C. Capasso, C.T. Supuran, I.M. Coelhoso, J.G. Crespo, M. Barboiu, Supported ionic liquid membranes immobilized with carbonic anhydrases for CO2 transport at high temperatures, J Memb Sci. 528 (2017) 225–230. https://doi.org/10.1016/j.memsci.2017.01.033.

F. Moghadam, E. Kamio, H. Matsuyama, High CO2separation performance of amino acid ionic liquid-based double network ion gel membranes in low CO2concentration gas mixtures under humid conditions, J Memb Sci. 525 (2017) 290–297. https://doi.org/10.1016/j.memsci.2016.12.002.

I.K. Swati, Q. Sohaib, S. Cao, M. Younas, D. Liu, J. Gui, M. Rezakazemi, Protic/aprotic ionic liquids for effective CO2 separation using supported ionic liquid membrane, Chemosphere. 267 (2021) 128894. https://doi.org/10.1016/j.chemosphere.2020.128894.

X. Zhang, Z. Tu, H. Li, K. Huang, X. Hu, Y. Wu, D.R. MacFarlane, Selective separation of H2S and CO2 from CH4 by supported ionic liquid membranes, J Memb Sci. 543 (2017) 282–287. https://doi.org/10.1016/j.memsci.2017.08.033.

T. Zhang, W. Huang, T. Jia, Y. Liu, S. Yao, Ionic liquid@β-cyclodextrin-gelatin composite membrane for effective separation of tea polyphenols from green tea, Food Chem. 333 (2020) 127534. https://doi.org/10.1016/j.foodchem.2020.127534.

X. Lu, Q. Chen, D. Zhao, J. Zhu, J. Ji, Silver-based ionic liquid as separation media: Supported liquid membrane for facilitated methyl linolenate transport, J Memb Sci. 585 (2019) 218–229. https://doi.org/10.1016/j.memsci.2019.05.027.

N.A. Ramli, N.A. Hashim, M.K. Aroua, Supported ionic liquid membranes (SILMs) as a contactor for selective absorption of CO2/O2 by aqueous monoethanolamine (MEA), Sep Purif Technol. 230 (2020) 115849. https://doi.org/10.1016/j.seppur.2019.115849.

I. Cichowska-Kopczyńska, R. Aranowski, Effectiveness of toluene separation from gas phase using supported ammonium ionic liquid membrane, Chem Eng Sci. 219 (2020). https://doi.org/10.1016/j.ces.2020.115605.

D. Nikolaeva, I. Azcune, M. Tanczyk, K. Warmuzinski, M. Jaschik, M. Sandru, P.I. Dahl, A. Genua, S. Loïs, E. Sheridan, A. Fuoco, I.F.J. Vankelecom, The performance of affordable and stable cellulose-based poly-ionic membranes in CO2/N2 and CO2/CH4 gas separation, J Memb Sci. 564 (2018) 552–561. https://doi.org/10.1016/j.memsci.2018.07.057.

M. Jebur, A. Sengupta, Y.H. Chiao, M. Kamaz, X. Qian, R. Wickramasinghe, Pi electron cloud mediated separation of aromatics using supported ionic liquid (SIL) membrane having antibacterial activity, J Memb Sci. 556 (2018) 1–11. https://doi.org/10.1016/j.memsci.2018.03.064.

A. Fdz De Anastro, N. Lago, C. Berlanga, M. Galcerán, M. Hilder, M. Forsyth, D. Mecerreyes, Poly(ionic liquid)iongel membranes for all solid-state rechargeable sodium battery, J Memb Sci. 582 (2019) 435–441. https://doi.org/10.1016/j.memsci.2019.02.074.

M. Khadivi, V. Javanbakht, Emulsion ionic liquid membrane using edible paraffin oil for lead removal from aqueous solutions, J Mol Liq. 319 (2020) 114137. https://doi.org/10.1016/j.molliq.2020.114137.

M. Farrokhara, F. Dorosti, New high permeable polysulfone/ionic liquid membrane for gas separation, Chinese J Chem Eng. 28 (2020) 2301–2311. https://doi.org/10.1016/j.cjche.2020.04.002.

W.H. Lai, D.K. Wang, M.Y. Wey, H.H. Tseng, Recycling waste plastics as hollow fiber substrates to improve the anti-wettability of supported ionic liquid membranes for CO2 separation, J Clean Prod. 276 (2020) 124194. https://doi.org/10.1016/j.jclepro.2020.124194.

H. Dou, B. Jiang, M. Xu, J. Zhou, Y. Sun, L. Zhang, Supported ionic liquid membranes with high carrier efficiency via strong hydrogen-bond basicity for the sustainable and effective olefin/paraffin separation, Chem Eng Sci. 193 (2019) 27–37. https://doi.org/10.1016/j.ces.2018.08.060.

P. Rdzanek, J. Marszałek, W. Kamiński, Biobutanol concentration by pervaporation using supported ionic liquid membranes, Sep Purif Technol. 196 (2018) 124–131. https://doi.org/10.1016/j.seppur.2017.10.010.

L. Liu, S. Xiong, L. Zeng, C. Cai, F. Li, Z. Tan, Two birds with one stone: Porous poly(ionic liquids) membrane with high efficiency for the separation of amino acids mixture and its antibacterial properties, J Colloid Interface Sci. 584 (2021) 866–874. https://doi.org/10.1016/j.jcis.2020.10.018.

R. Malas, Y. Ibrahim, I. AlNashef, F. Banat, S.W. Hasan, Impregnation of polyethylene membranes with 1-butyl-3-methylimidazolium dicyanamide ionic liquid for enhanced removal of Cd2+, Ni2+, and Zn2+ from aqueous solutions, J Mol Liq. 318 (2020) 113981. https://doi.org/10.1016/j.molliq.2020.113981.

G. Zante, M. Boltoeva, A. Masmoudi, R. Barillon, D. Trébouet, Lithium extraction from complex aqueous solutions using supported ionic liquid membranes, J Memb Sci. 580 (2019) 62–76. https://doi.org/10.1016/j.memsci.2019.03.013.

Downloads

Published

2021-03-22

Issue

Section

Articles