Grand Challenges in Membrane Biofouling Mitigation

Authors

  • Chidambaram Thamaraiselvan aDepartment of Materials Engineering, Indian Institute of Science, Bangalore 560012, India bDepartment of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus 84990, Israel http://orcid.org/0000-0002-1443-9474

DOI:

https://doi.org/10.11113/amst.v25n1.203

Keywords:

Biofouling, membrane, water treatment, Carbon nanomaterials, electric potential

Abstract

Biofouling prevention is a critical challenge in the membrane-based water and wastewater treatment process. Carbon-based nanomaterials which are having exceptional physical, chemical, and electrical properties bring new technologies for addressing biofouling. This paper highlights the novel membrane developments using carbon-based nanomaterials and their potential applications for anti-biofouling technology and its recent cutting-edge developments. Finally, this review also outlines future opportunities for carbon-nanomaterial application in environmental systems.

References

REFERENCES

F. Perreault, A. Fonseca de Faria, M. Elimelech, Environmental applications of graphene-based nanomaterials, Chem. Soc. Rev. 44 (2015) 5861–5896. doi:10.1039/C5CS00021A.

M. Elimelech, W.A. Phillip, The Future of Seawater Desalination: Energy, Technology, and the Environment, Science (80-. ). 333 (2011) 712–717. doi:10.1126/science.1200488.

I.-C. Kim, Y.-H. Ka, J.-Y. Park, K.-H. Lee, Preparation of fouling resistant nanofiltration and reverse osmosis membranes and their use for dyeing wastewater effluent, J. Ind. Eng. Chem. 10 (2004) 115–121. http://www.cheric.org/research/tech/periodicals/view.php?seq=441266.

C. Thamaraiselvan, A. Ronen, S. Lerman, M. Balaish, Y. Ein-Eli, C.G. Dosoretz, Low voltage electric potential as a driving force to hinder biofouling in self-supporting carbon nanotube membranes, Water Res. 129 (2018) 143–153. doi:10.1016/J.WATRES.2017.11.004.

S. Balta, A. Sotto, P. Luis, L. Benea, B. Van der Bruggen, J. Kim, A new outlook on membrane enhancement with nanoparticles: The alternative of ZnO, J. Memb. Sci. 389 (2012) 155–161. doi:10.1016/j.memsci.2011.10.025.

J.H. Jhaveri, Z.V.P. Murthy, A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes, Desalination. 379 (2016) 137–154. doi:10.1016/j.desal.2015.11.009.

K. Hussey, J. Pittock, The Energy–Water Nexus: Managing the Links between Energy and Water for a Sustainable Future, Ecol. Soc. 17 (2012) 31. doi:10.5751/ES-04641-170131.

C. Thamaraiselvan, J. Wang, D.K. James, P. Narkhede, S.P. Singh, D. Jassby, J.M. Tour, C.J. Arnusch, Laser-induced graphene and carbon nanotubes as conductive carbon-based materials in environmental technology, Mater. Today. (2019). doi:10.1016/j.mattod.2019.08.014.

R. Ye, D.K. James, J.M. Tour, Laserâ€Induced Graphene: From Discovery to Translation, Adv. Mater. 31 (2019) 1803621. doi:10.1002/ADMA.201803621.

H.C. Flemming, G. Schaule, T. Griebe, J. Schmitt, a Tamachkiarowa, Biofouling - the Achilles heel of membrane processes, Desalination. 113 (1997) 215–225. doi:10.1016/S0011-9164(97)00132-X.

C. Liu, S. Caothien, J. Hayes, T. Caothuy, Membrane Chemical Cleaning : From Art to Science, (n.d.).

J.S. Baker, L.Y. Dudley, Biofouling in membrane systems — A review, Desalination. 118 (1998) 81–89. doi:10.1016/S0011-9164(98)00091-5.

D. Rana, T. Matsuura, Surface modifications for antifouling membranes, Chem. Rev. 110 (2010) 2448–2471. doi:10.1021/cr800208y.

J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E.L.G. Samuel, M.J. Yacaman, B.I. Yakobson, J.M. Tour, Laser-induced porous graphene films from commercial polymers, Nat. Commun. 2014 5. 5 (2014) 5714. doi:10.1038/ncomms6714.

Y. Chyan, R. Ye, Y. Li, S. Pratap Singh, C.J. Arnusch, J.M. Tour, S.P. Singh, C.J. Arnusch, J.M. Tour, Laser-Induced Graphene by Multiple Lasing: Toward Electronics on Cloth, Paper, and Food, ACS Nano. 12 (2018) 2176–2183. doi:10.1021/acsnano.7b08539.

A.K. Thakur, S.P. Singh, C. Thamaraiselvan, M.N. Kleinberg, C.J. Arnusch, Graphene oxide on laser-induced graphene filters for antifouling, electrically conductive ultrafiltration membranes, J. Memb. Sci. 591 (2019) 117322. doi:10.1016/j.memsci.2019.117322.

a J. van der Borden, H.C. van der Mei, H.J. Busscher, Electric-current-induced detachment of Staphylococcus epidermidis strains from surgical stainless steel., J. Biomed. Mater. Res. B. Appl. Biomater. 68 (2004) 160–164. doi:10.1002/jbm.b.20015.

J.P. Busalmen, S.R. De Sánchez, Adhesion of Pseudomonas fluorescens (ATCC 17552) to Nonpolarized and Polarized Thin Films of Gold, Appl. Environ. Microbiol. 67 (2001) 3188–3194. doi:10.1128/AEM.67.7.3188-3194.2001.

S.H. Hong, J. Jeong, S. Shim, H. Kang, S. Kwon, K.H. Ahn, J. Yoon, Effect of electric currents on bacterial detachment and inactivation, Biotechnol. Bioeng. 100 (2008) 379–386. doi:10.1002/bit.21760.

R.E. Pérez-Roa, D.T. Tompkins, M. Paulose, C.A. Grimes, M.A. Anderson, D.R. Noguera, Effects of localised, low-voltage pulsed electric fields on the development and inhibition of Pseudomonas aeruginosa biofilms., Biofouling. 22 (2006) 383–390. doi:10.1080/08927010601053541.

Y. Baek, H. Yoon, S. Shim, J. Choi, J. Yoon, Electroconductive Feed Spacer as a Tool for Biofouling Control in a Membrane System for Water Treatment, Environ. Sci. Technol. Lett. 1 (2014) 179–184. doi:10.1021/ez400206d.

H. Kang, S. Shim, S.J. Lee, J. Yoon, K.H. Ahn, Bacterial translational motion on the electrode surface under anodic electric field, Environ. Sci. Technol. 45 (2011) 5769–5774. doi:10.1021/es200752h.

C.F. De Lannoy, D. Jassby, K. Gloe, A.D. Gordon, M.R. Wiesner, Aquatic biofouling prevention by electrically charged nanocomposite polymer thin film membranes, Environ. Sci. Technol. 47 (2013) 2760–2768. doi:10.1021/es3045168.

Y. Baek, C. Kim, D.K. Seo, T. Kim, J.S. Lee, Y.H. Kim, K.H. Ahn, S.S. Bae, S.C. Lee, J. Lim, K. Lee, J. Yoon, High performance and antifouling vertically aligned carbon nanotube membrane for water purification, J. Memb. Sci. 460 (2014) 171–177. doi:10.1016/j.memsci.2014.02.042.

A. Ronen, W. Duan, I. Wheeldon, S. Walker, D. Jassby, Microbial Attachment Inhibition through Low-Voltage Electrochemical Reactions on Electrically Conducting Membranes, Environ. Sci. Technol. 49 (2015) 12741–12750. doi:10.1021/acs.est.5b01281.

C.F. de Lannoy, E. Soyer, M.R. Wiesner, Optimizing carbon nanotube-reinforced polysulfone ultrafiltration membranes through carboxylic acid functionalization, J. Memb. Sci. 447 (2013) 395–402. doi:10.1016/j.memsci.2013.07.023.

Ihsanullah, A.M. Al Amer, T. Laoui, A. Abbas, N.N. Al-Aqeeli, F. Patel, M. Khraisheh, M.A. Atieh, N. Hilal, Fabrication and antifouling behaviour of a carbon nanotube membrane, Mater. Des. 89 (2015) 549–558. doi:10.1016/j.matdes.2015.10.018.

S.P. Singh, Y. Li, A. Be’er, Y. Oren, J.M. Tour, C.J. Arnusch, Laser-Induced Graphene Layers and Electrodes Prevents Microbial Fouling and Exerts Antimicrobial Action, ACS Appl. Mater. Interfaces. 9 (2017) 18238–18247. doi:10.1021/acsami.7b04863.

S.P. Singh, Y. Li, J. Zhang, J.M. Tour, C.J. Arnusch, Sulfur-Doped Laser-Induced Porous Graphene Derived from Polysulfone-Class Polymers and Membranes, ACS Nano. 12 (2018) 289–297. doi:10.1021/acsnano.7b06263.

A.K. Thakur, S.P. Singh, M.N. Kleinberg, A. Gupta, C.J. Arnusch, Laser-Induced Graphene-PVA Composites as Robust Electrically Conductive Water Treatment Membranes, ACS Appl. Mater. Interfaces. 11 (2019) 10914–10921. doi:10.1021/acsami.9b00510.

A. Gupta, L. Holoidovsky, C. Thamaraiselvan, A.K. Thakur, S.P. Singh, M.M. Meijler, C.J. Arnusch, Silver-doped laser-induced graphene for potent surface antibacterial activity and anti-biofilm action, Chem. Commun. 55 (2019) 6890–6893. http://xlink.rsc.org/?DOI=C9CC02415H (accessed July 14, 2019).

A.T. Poortinga, R. Bos, W. Norde, H.J. Busscher, Electric double layer interactions in bacterial adhesion to surfaces, 2002. doi:10.1016/S0167-5729(02)00032-8.

A.T. Poortinga, J. Smit, H.C. Van Der Mei, H.J. Busscher, Electric field induced desorption of bacteria from a conditioning film covered substratum, Biotechnol. Bioeng. 76 (2001) 395–399. doi:10.1002/bit.10129.

G. Daeschlein, O. Assadian, L.C. Kloth, C. Meinl, F. Ney, A. Kramer, Antibacterial activity of positive and negative polarity low-voltage pulsed current (LVPC) on six typical Gram-positive and Gram-negative bacterial pathogens of chronic wounds., Wound Repair Regen. 15 (2007) 399–403. doi:10.1111/j.1524-475X.2007.00242.x.

L. Eshed, S. Yaron, C.G. Dosoretz, Effect of Permeate Drag Force on the Development of a Biofouling Layer in a Pressure-Driven Membrane Separation System, Appl. Environ. Microbiol. 74 (2008) 7338–7347. doi:10.1128/AEM.00631-08.

A.M. Jastrzębska, P. Kurtycz, A.R. Olszyna, Recent advances in graphene family materials toxicity investigations, J. Nanoparticle Res. 14 (2012) 1320. doi:10.1007/s11051-012-1320-8.

D.H. Seo, S. Pineda, Y.C. Woo, M. Xie, A.T. Murdock, E.Y.M. Ang, Y. Jiao, M.J. Park, S. Il Lim, M. Lawn, F.F. Borghi, Z.J. Han, S. Gray, G. Millar, A. Du, H.K. Shon, T.Y. Ng, K. Ostrikov, Anti-fouling graphene-based membranes for effective water desalination, Nat. Commun. 9 (2018) 683. doi:10.1038/s41467-018-02871-3.

J. Jeong, J.Y. Kim, M. Cho, W. Choi, J. Yoon, Inactivation of Escherichia coli in the electrochemical disinfection process using a Pt anode, Chemosphere. 67 (2007) 652–659. doi:10.1016/j.chemosphere.2006.11.035.

G. Marx, A. Moody, D. Bermúdez-Aguirre, A comparative study on the structure of Saccharomyces cerevisiae under nonthermal technologies: High hydrostatic pressure, pulsed electric fields and thermo-sonication, Int. J. Food Microbiol. 151 (2011) 327–337. doi:10.1016/j.ijfoodmicro.2011.09.027.

S.P. Singh, S. Ramanan, Y. Kaufman, C.J. Arnusch, Laser-Induced Graphene Biofilm Inhibition: Texture Does Matter, ACS Appl. Nano Mater. 1 (2018) 1713–1720. doi:10.1021/acsanm.8b00175.

C.M. Tittle, D. Yilman, M.A. Pope, C.J. Backhouse, Robust Superhydrophobic Laser-Induced Graphene for Desalination Applications, Adv. Mater. Technol. 3 (2018) 1700207. doi:10.1002/admt.201700207.

G. Li, W.-C. Law, K.C. Chan, Floating, highly efficient, and scalable graphene membranes for seawater desalination using solar energy, Green Chem. 20 (2018) 3689–3695. doi:10.1039/C8GC01347K.

A. V. Dudchenko, C. Chen, A. Cardenas, J. Rolf, D. Jassby, Frequency-dependent stability of CNT Joule heaters in ionizable media and desalination processes, Nat. Nanotechnol. 12 (2017) 557–563. doi:10.1038/nnano.2017.102.

J. Lin, W. Ye, J. Huang, B. Ricard, M.C. Baltaru, B. Greydanus, S. Balta, J. Shen, M. Vlad, A. Sotto, P. Luis, B. Van Der Bruggen, Toward Resource Recovery from Textile Wastewater: Dye Extraction, Water and Base/Acid Regeneration Using a Hybrid NF-BMED Process, ACS Sustain. Chem. Eng. 3 (2015) 1993–2001. doi:10.1021/acssuschemeng.5b00234.

P. Duan, X. Yang, G. Huang, J. Wei, Z. Sun, X. Hu, La2O3-CuO2/CNTs electrode with excellent electrocatalytic oxidation ability for ceftazidime removal from aqueous solution, Colloids Surfaces A Physicochem. Eng. Asp. 569 (2019) 119–128. doi:10.1016/J.COLSURFA.2019.02.056.

L. Li, J. Zhang, Z. Peng, Y. Li, C. Gao, Y. Ji, R. Ye, N.D. Kim, Q. Zhong, Y. Yang, H. Fei, G. Ruan, J.M. Tour, High-Performance Pseudocapacitive Microsupercapacitors from Laser-Induced Graphene, Adv. Mater. 28 (2016) 838–845. doi:10.1002/adma.201503333.

Downloads

Published

2021-03-22

Issue

Section

Articles