High-Performance Nanosilver Thin Film Nanocomposite Membranes Prepared on Carbon Nanotube-Based Supports

Authors

  • N. N. Gumbi Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Florida ,1709 Johannesburg, South Africa https://orcid.org/0000-0002-2479-7187
  • B. S. Mbuli Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
  • M. O. Daramola Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Private Bag X20 Hatfield, Pretoria, 0028, South Africa
  • S. D. Mhlanga DST/MINTEK Nanotechnology Innovation Centre and SabiNano Pty Ltd, Mintek, 200 Malibongwe Drive, Strijdom Park, Randburg, 2194, Johannesburg, South Africa
  • B. B. Mamba Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Florida ,1709 Johannesburg, South Africa
  • E. N. Nxumalo Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Florida ,1709 Johannesburg, South Africa

DOI:

https://doi.org/10.11113/amst.v24n3.201

Abstract

Biofouling in membranes is a serious concern as it leads to a severe reduction in membrane performance by increasing the membranes’ resistance to permeate flow. This work describes a facile method for the production of high performance nanosilver polyamide thin-film nanocomposite (TFN) membranes on carbon nanotube-based supports for biofouling control. The TFN membranes were prepared by the interfacial polymerization of a thin polyamide layer over a polyethersulfone (PES) support layer. Nanosilver (nAg) particles were generated in-situ on the surface of the polyamide layer using a reduction reaction between a silver salt and sodium borohydride. The support layer of the TFN membrane contained nitrogen doped multi-walled carbon nanotubes (N-MWCNTs) at various dosages. The SEM/EDS microscopic analyses revealed that nAg particles were present on the polyamide layer and that they were evenly distributed throughout the TFN membrane. Furthermore, the TFN membrane showed an improved water permeability (from 16.74 L/m2.h to 22.86 L/m2.h at 150 Psi) without sever compromise in NaCl rejection (from 98.37% to 99.40%) compared to the bare TFC membrane. This was attributable to the combined hydrophilic effects imparted by the presence of nAg on the TFN polyamide layer and the oxidised CNTs in the support layer. Antibacterial tests conducted using Escherichia coli bacteria demonstrated that the TFN containing nAg particles membranes exude better antibacterial activity compared to the pristine TFC membrane as evidenced by a clear zone of inhibition, in the area surrounding the TFN membrane and the absence of bacterial colonies. The present study demonstrated that the presence of low dosages of CNTs in the support layer is essential in the improvement of mechanical strength and performance properties of the support layer, while nAg plays a crucial role in the enhancement of TFN membrane performance.

 

References

B. H. Jeong, E. M. Hoek, Y. Yan, A. Subramani, X. Huang, G. Hurwitz, A. Ghosh, A. Jawor. 2007. Interfacial Polymerization of Thin Film Nanocomposites: A New Concept for Reverse Osmosis Membranes. J. Membr. Sci. 294(1-2): 1-7.

M. F. Goosen, S. Sablani, R. Roque-Malherbe. 2008. Membrane Fouling: Recent Strategies and Methodologies for Its Minimization. Handbook of Membrane Separations: Chemical, Pharmaceuticals, Food and Biotechnological Applications CRC Press. Taylor and Francis. 325-41.

K. R. Zodrow, M. E. Tousley, M. Elimelech. 2014. Mitigating Biofouling on Thin-film Composite Polyamide Membranes using a Controlled-release Platform. J. Membr. Sci. 453: 84-91.

N. Misdan, W. J. Lau, A. Ismail. 2012. Seawater Reverse Osmosis (SWRO) Desalination by Thin-film Composite Membrane—Current Development, Challenges and Future Prospects. Desalination. 287: 228-37.

C. Marambio-Jones, E. M. V. Hoek. 2010. A Review of the Antibacterial Effects of Silver Nanomaterials and Potential Implications for Human Health and the Environment. J. Nanopart. Res. 12(5): 1531-51.

M. Ben-Sasson, X. Lu, E. Bar-Zeev, K.R. Zodrow, S. Nejati, G. Qi, E.P. Gainnelis, M. Elimelech. 2014. In Situ Formation of Silver Nanoparticles on Thin-film Composite Reverse Osmosis Membranes for Biofouling Mitigation. Water Res. 62: 260-70.

K. Zodrow, L. Brunet, S. Mahendra, D. Li, A. Zhang, Q. Li, P. J. J. Alvarez. 2009. Polysulfone Ultrafiltration Membranes Impregnated with Silver Nanoparticles Show Improved Biofouling Resistance and Virus Removal. Water Res. 43(3): 715-23.

I. Sawada, R. Fachrul, T. Ito, Y. Ohmukai, T. Maruyama, H. Matsuyama. 2012. Development of a Hydrophilic Polymer Membrane Containing Silver Nanoparticles with Both Organic Antifouling and Antibacterial Properties. J. Membr. Sci. 387: 1-6.

D.Y. Koseoglu-Imer, B. Kose, M. Altinbas, I. Koyuncu. 2013. The Production of Polysulfone (PS) Membrane with Silver Nanoparticles (AgNP): Physical Properties, Filtration Performances, and Biofouling Resistances of Membranes. J. Membr. Sci. 428: 620-8.

J. S. Taurozzi, H. Arul, V. Z. Bosak, A. F. Burban, T. C. Voice, M. L. Bruening, V. V. Tarabara. 2008. Effect of Filler Incorporation Route on the Properties of Polysulfone–Silver Nanocomposite Membranes of Different Porosities. J. Membr. Sci. 325(1): 58-68.

X. Cao, M. Tang, F. Liu, Y. Nie, C. Zhao. 2010. Immobilization of Silver Nanoparticles Onto Sulfonated Polyethersulfone Membranes as Antibacterial Materials. Colloids Surf. B. 81(2):555-62.

E.M. Hoek, S. Bhattacharjee, M. Elimelech. 2003. Effect of Membrane Surface Roughness on Colloid− Membrane Dlvo Interactions. Langmuir. 19(11): 4836-47.

M. Sile-Yuksel, B. Tas, D.Y. Koseoglu-Imer, I. Koyuncu. 2014. Effect of Silver Nanoparticle (AgNP) Location In Nanocomposite Membrane Matrix Fabricated with Different Polymer Type on Antibacterial Mechanism. Desalination. 347: 120-30.

E. S Kim, G. Hwang, M. G El-Din, Y. Liu. 2012. Development of Nanosilver and Multi-Walled Carbon Nanotubes Thin-Film Nanocomposite Membrane for Enhanced Water Treatment. J. Membr. Sci. 394: 37-48.

N. Phao, E. N. Nxumalo, B. B. Mamba, S. D. Mhlanga. 2013. A Nitrogen-Doped Carbon Nanotube Enhanced Polyethersulfone Membrane System for Water Treatment. Phys. Chem. Earth., Parts A/B/C. 66:148-56.

S. Y. Lee, H. J. Kim, R. Patel, S. J. Im, J. H. Kim, B. R. Min. 2007. Silver Nanoparticles Immobilized on Thin Film Composite Polyamide Membrane: Characterization, Nanofiltration, Antifouling Properties. Polym. Adv. Technol. 18(7): 562-8.

H. L. Yang, J. Chun-Te Lin, C. Huang. 2009. Application of Nanosilver Surface Modification to RO Membrane and Spacer for Mitigating Biofouling in Seawater Desalination. Water Res. 43(15): 3777-86.

N. N. Gumbi, M. Hu, B. B. Mamba, J. Li, E. N. Nxumalo. 2018. Macrovoid-free PES/SPSf/O-MWCNT Ultrafiltration Membranes with Improved Mechanical Strength, Antifouling and Antibacterial Properties. J. Membr. Sci. 566: 288-300.

N. N. Gumbi, J. Li, B. B. Mamba, E. N. Nxumalo. 2020. Relating the Performance of Sulfonated Thin-Film Composite Nanofiltration Membranes to Structural Properties of Macrovoid-Free Polyethersulfone/Sulfonated Polysulfone/O-MWCNT Supports. Desalination. 474: 114176.

E. N. Nxumalo, V. O. Nyamori, N. J. Coville. 2008. CVD Synthesis of Nitrogen Doped Carbon Nanotubes Using Ferrocene/Aniline Mixtures. J. Organomet. Chem. 693(17): 2942-8.

X. Li, G. Zhu, Z. Xu. 2012. Nitrogen-doped Carbon Nanotube Arrays Grown on Graphene Substrate. Thin Solid Films. 520(6): 1959-64.

B. G. Sumpter, V. Meunier, J. M. Romo-Herrera, E. Cruz-Silva, D. A. Cullen, H. Terrones, D. J. Smith, M. Terrones. 2007. Nitrogen-mediated Carbon Nanotube Growth: Diameter Reduction, Metallicity, Bundle Dispersability, and Bamboo-Like Structure Formation. ACS Nano. 1(4): 369-75.

M. A. Motchelaho, H. Xiong, M. Moyo, L. L. Jewell, N. J. Coville. 2011. Effect of Acid Treatment on the Surface of Multiwalled Carbon Nanotubes Prepared from Fe–Co Supported on CaCO3: Correlation with Fischer–Tropsch Catalyst Activity. J. Mol. Catal. A. Chem. 335(1-2): 189-98.

V. Vatanpour, S.S. Madaeni, R. Moradian, S. Zinadini, B. Astinchap. 2011. Fabrication and Characterization of Novel Antifouling Nanofiltration Membrane Prepared from Oxidized Multiwalled Carbon Nanotube/Polyethersulfone Nanocomposite. J. Membr. Sci. 375(1-2): 284-94.

A. Rahimpour, M. Jahanshahi, S. Khalili, A. Mollahosseini, A. Zirepour, B. Rajaeian. 2012. Novel Functionalized Carbon Nanotubes for Improving the Surface Properties and Performance of Polyethersulfone (PES) Membrane. Desalination. 286: 99-107.

D. M. Wang, F. C Lin, T. T, W. J. Lau. 1998. Formation Mechanism of the Macrovoids Induced by Surfactant Additives. J. Membr. Sci. 142(2): 191-204.

H. Ogawa, T. Kanaya, K. Nishida, G. Matsuba. 2008. Phase Separation and Dewetting in Polystyrene/poly (vinyl methyl ether) Blend Thin Films in a Wide Thickness Range. Polymer. 49(1): 254-62.

E. Celik, H. Park, H. Choi, H. Choi. 2011. Carbon Nanotube Blended Polyethersulfone Membranes for Fouling Control in Water Treatment. Water Res. 45(1): 274-82.

M. Sun, Y. Su, C. Mu, Z. Jiang. 2010. Improved Antifouling Property of PES Ultrafiltration Membranes using Additive of silica− PVP Nanocomposite. Ind. Eng. Chem. Res. 49(2): 790-6.

S. Qiu, L. Wu, X. Pan, L. Zhang, H. Chen, C. Gao. 2009. Preparation and Properties of Functionalized Carbon Nanotube/PSF Blend Ultrafiltration Membranes. J. Membr. Sci. 42(1-2): 165-72.

P. Daraei, S. S. Madaeni, N. Ghaemi, M. A. Khadivi, B. Astinchap, R. Moradian. 2013. Enhancing Antifouling Capability of PES Membrane via Mixing with Various Types of Polymer Modified Multi-Walled Carbon Nanotube. J. Membr. Sci. 444: 184-91.

G. R. Xu, J. N. Wang, C. J. Li. 2013. Strategies for Improving the Performance of the Polyamide Thin Film Composite (PA-TFC) Reverse Osmosis (RO) Membranes: Surface Modifications and Nanoparticles Incorporations. Desalination. 328: 83-100.

E. M. V. Hoek, S. Hong, M. Elimelech. 2001. Influence of Membrane Surface Properties on Initial Rate of Colloidal Fouling of Reverse Osmosis and Nanofiltration Membranes. J. Membr. Sci. 188(1): 115-28.

Yin, J., Yang, Y., Z. Hu, B. Deng. 2013. Attachment of Silver Nanoparticles (AgNPs) onto Thin-Film Composite (TFC) Membranes through Covalent Bonding to Reduce Membrane Biofouling. J. Membr. Sci. 441: 73-82.

J. Liu, R. H. Hurt. 2010. Ion Release Kinetics and Particle Persistence in Aqueous Nano-Silver Colloids. Environ. Sci. Technol. 44(6): 2169-75.

Downloads

Published

2020-11-19

How to Cite

Gumbi, N. N., Mbuli, B. S., Daramola, M. O., Mhlanga, S. D., Mamba, B. B., & Nxumalo, E. N. (2020). High-Performance Nanosilver Thin Film Nanocomposite Membranes Prepared on Carbon Nanotube-Based Supports. Journal of Applied Membrane Science & Technology, 24(3). https://doi.org/10.11113/amst.v24n3.201

Issue

Section

Articles