Oxygen/Nitrogen Gas Separation by Polyetherimide Hollow Fiber Membrane: Effects of Bore Fluid Rate on Permeance and Selectivity

Authors

  • K. C. Chong Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, 43300 Kajang, Malaysia https://orcid.org/0000-0002-4916-2030
  • S. O. Lai Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, 43300 Kajang, Malaysia https://orcid.org/0000-0001-5867-9843
  • H. S. Thiam Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, 43300 Kajang, Malaysia https://orcid.org/0000-0002-8952-4630
  • S. S. Lee Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, 43300 Kajang, Malaysia

DOI:

https://doi.org/10.11113/amst.v24n2.184

Abstract

The demand of the oxygen and nitrogen gas had been increasing exponential since the industrial evolution. The conventional gas production technique such as cryogenic distillation and pressure swing absorption able to produce high gas purity and production rate. However, the conventional technique required extensive plant size and energy requirement. Membrane technology has been a key research over the past decades due to its dignified separation technology where no addition of chemicals, low energy usage as well as low setting up requirement. Polymeric hollow fiber membranes are commonly fabricated by dry-jet wet phase inversion attributed to the ability of mass membrane production. To date, many literature reported the effect of the fabrication parameter on the spinning of the hollow fiber membrane such as air gap and force convection on the properties of the membrane, however to the best of our knowledge, there is few attention to study the effect of bore fluid flow rate. In this work, polyetherimide (PEI) is fabricated by dry-jet wet phase inversion techniques with different bore fluid flow rate to evaluate its effect on physical properties and gas permeation of oxygen/nitrogen. Generally, the PEI membrane possess similar morphology of possesses asymmetric thin and dense structure supported by finger like structure. However, the thickness of the membrane decreases with the increase of bore fluid flowrate. The gas permeation study suggested that PEI membrane with highest bore fluid flow rate (1.0 mL/min) in this work possess yield the highest selectivity (3.92), gas permeance for both oxygen (47.15 GPU) and nitrogen gas (12.03 GPU).

References

Sadrzadeh, A., Mohammadi, T. 2019. Nanocomposite Membranes for Water and Gas Separation. Elsevier.

https://www.elsevier.com/books/nanocomposite-membranes-for-water-and-gas-separation/sadrzadeh/978-0-12-816710-6.

Sanders, D. F., Smith, Z. P., Guo, R., Robeson, L. M., McGrath, J. E., Paul, D. R., Freeman, B. D. 2013. Energy-efficient Polymeric Gas Separation Membranes for a Sustainable Future: A Review. Polymer. 54: 4729-4761.

https://www.sciencedirect.com/science/article/pii/S0032386113005399.

Liang, C. Z., Chung, T.-S. and Lai, J.-Y., 2019. A Review of Polymeric Composite Membranes for Gas Separation and Energy Production. Prog. Polym. Sci. 97: 101141.

https://www.sciencedirect.com/science/article/pii/S007967001930111X.

Alqaheem, Y., Alomair, A., Vinoba, A., Pérez, A. 2017. Polymeric Gas-separation Membranes for Petroleum Refining. Int. J. Polym. Sci. 2017: 1-19.

https://www.hindawi.com/journals/ijps/2017/4250927/.

Bernardo, P., Drioli, E., Golemme, G. 2009 Membrane Gas Separation: A Review/State of the Art. Ind. Eng. Chem. Res. 48(10): 4638-4663.

https://doi.org/10.1021/ie8019032.

Chong, K. C., Lai, S. O., Lee, K. M., Lau, W. J., Ismail, A. F., Ooi, B. S. 2015. Characteristic and Performance of Polyvinylidene Fluoride Membranes Blended with Different Additives in Direct Contact Membrane Distillation, Desalin. Water Treat. 54(12): 3218-3226.

https://www.tandfonline.com/doi/abs/10.1080/19443994.2014.910139.

Belaissaoui, B., Moullec, Y. L., Hagi, H., Favre, E. 2014. Energy Efficiency of Oxygen Enriched Air Production Technologies: Cryogenic vs. Membranes. Sep. Purif. Technol. 125(63): 142-150.

https://www.sciencedirect.com/science/article/pii/S1876610214018694

Chong, K. C., Lai, S. O., Thiam, H. S., Teoh, H. C., Heng, S. L. 2016. Recent Progress of Oxygen/Nitrogen Separation Using Membrane Technology. J. Eng. Sci. Technol. 11: 1016-1030.

http://jestec.taylors.edu.my/Vol%2011%20issue%207%20July%202016/11_7_8.pdf.

Robeson, L. M. 1991. Correlation of Separation Factor Versus Permeability for Polymeric Membranes. J. Membr. Sci. 62(2): 165-185. https://www.sciencedirect.com/science/article/pii/037673889180060J.

Robeson, L. M. 2008. The Upper Bound Revisited. J. Membr. Sci. 320(1): 390-400.

https://www.sciencedirect.com/science/article/abs/pii/S0376738808003347.

McKelvey, S. C., Clausi, D. T., Koros, W. J. 1997. A Guide to Establishing Hollow Fiber Macroscopic Properties for Membrane Applications. J. Membr. Sci. 124(2): 223-232.

https://www.sciencedirect.com/science/article/abs/pii/S0376738896002499.

Tang, Y., Li, N., Liu, A., Ding, S. Yi, C., Liu, H. 2012. Effect of Spinning Conditions on the Structure and Performance of Hydrophobic PVDF Hollow Fiber Membranes for Membrane Distillation. Desalination. 287: 326-339.

https://www.sciencedirect.com/science/article/abs/pii/S0011916411009787.

Fauzi, A. F., Khulbe, K. C., Matsuura, T. 2015. Gas Separation Membranes–Polymeric and Inorganic. Springer.

https://www.springer.com/gp/book/9783319010946.

Alqaheem, Y., Alomair, A. 2019. Recent Developments in Polyetherimide Membrane for Gas Separation. J Chin Chem Soc. 66(12): 1738-1744.

https://doi.org/10.1002/jccs.201900060

Chong, K. C., Lai, S. O., Lau, W. J., Thiam, H. S., Ismail, A. F. and Roslan, R. A. 2018. Preparation, Characterization, and Performance Evaluation of Polysulfone Hollow fiber Membrane with PEBAX or PDMS Coating for Oxygen Enhancement Process. Polymers. 10(2): 126-137.

https://www.mdpi.com/2073-4360/10/2/126/pdf/1.

Wahab, M. F. A.; Ismail, A. F., Shilton, S. J. 2012. Studies on Gas Permeation Performance of Asymmetric Polysulfone Hollow Fiber Mixed Matrix Membranes Using Nanosized Fumed Silica as Fillers. Sep. Purif. Technol. 15: 41-48.

https://www.sciencedirect.com/science/article/pii/S1383586611006083?via%3Dihub.

Zulhairun, A. K., Fachrurrazi, Z. G., Izwanne, M. and Ismail, A. F. 2015. Asymmetric Hollow Fiber Membrane Coated with Polydimethylsiloxane–metal Organic Framework Hybrid Layer for Gas Separation. Sep. Purif. Technol. 146: 85-93.

Chong, K. C., Lai, S. O., Lau, W. J., Thiam, H. S., Ismail, A. F., Zulhairun, A. K. 2017. Fabrication and Characterization of Polysulfone Membranes Coated with Polydimethysiloxane for Oxygen Enrichment. Aerosol Air Qual. Res. 17(11): 1-8.

https://aaqr.org/articles/aaqr-16-12-wfc12-0571.

He, C., Liang, K., Yong, A. 2015. Enhancing the Hydrophilicity and Water Permeability of Polypropylene Membranes by Nitric Acid Activation and Metal Oxide Deposition. J. Membr. Sci. 487: 109-116.

https://www.sciencedirect.com/science/article/abs/pii/S037673881500232X.

Peng, Y., Yu, Z., Li, F., Chen, Q., Yin, D., Min, X. 2018. A Novel Reduced Graphene Oxide-based Composite Membrane Prepared Via A Facile Deposition Method for Multifunctional Applications: Oil/Water Separation and Cationic Dyes Removal. Sep. Purif. Technol. 200: 130-140.

https://www.sciencedirect.com/science/article/pii/S138358661734039X.

Alobaidy, A. A., Sherhan, B. Y., Barood, A. D., Alsalhy, Q. F. 2017. Effect of Bore Fluid Flow Rate on Formation and Properties of Hollow Fibers. Appl Water Sci. 7: 4387-4398.

https://link.springer.com/article/10.1007/s13201-017-0584-7.

Ivanov, M. V., Dibrov, G. A., Loyko, A. V., Varezhkin, A. V., Kagramanov, G. G. 2016. Techniques to Manage Geometry Characteristics of Hollow-fiber Membranes. Theor. Found. Chem. Eng. 50: 316-324.

https://link.springer.com/article/10.1134/S0040579516030052.

Kamaruddin, H. D., Koros, W. J. 1997. Some Observations About the Application of Fick’s First Law for Membrane Separation of Multi-component Mixture. J. Membr. Sci. 135: 147-159.

https://www.sciencedirect.com/science/article/abs/pii/S0376738897001427.

Turkena, T., Reyhan, S.T., Esra, A. G., Tarabarad, V. V., Koyuncua, I. 2019. Progress on Reinforced Braided Hollow Fiber Membranes in Separation Technologies: A Review. J. Water Process. Eng. 32: 100938-100948.

https://www.sciencedirect.com/science/article/abs/pii/S2214714419304556.

Sheng, L., Ren, J., Hua, K., Li, H., Feng, Y., Deng, M. 2020. The Enhancement of Mechanical Properties of P84 Hollow Fiber Membranes by Thermally Annealing Below and Above Tg. J. Membr. Sci. 595: 117580.

https://www.sciencedirect.com/science/article/abs/pii/S0376738819319854.

Downloads

Published

2020-07-16

How to Cite

Chong, K. C., Lai, S. O., Thiam, H. S., & Lee, S. S. (2020). Oxygen/Nitrogen Gas Separation by Polyetherimide Hollow Fiber Membrane: Effects of Bore Fluid Rate on Permeance and Selectivity. Journal of Applied Membrane Science &Amp; Technology, 24(2). https://doi.org/10.11113/amst.v24n2.184

Issue

Section

Articles