Ceria-carbonate Electrolyte Ceramic Membrane for Intermediate and Low Temperature Solid Oxide Fuel Cells: A Review

Authors

  • S. Marthosa Faculty of Science and Industrial Technology, Prince of Songkla University, Suratthani Campus, Surat Thani 84000, Thailand Center of Excellence in Membrane Science and Technolo gy (CoEMST), Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand https://orcid.org/0000-0001-6793-0921
  • M. Suklueng PSU Energy Systems Research Institute (PERIN), Interdisciplinary Graduate School of Energy Systems, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
  • S. Niyomwas Department of Mechanical Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
  • E. Anancharoenwong Faculty of Science and Industrial Technology, Prince of Songkla University, Suratthani Campus, Surat Thani 84000, Thailand
  • Thitirat Ninwijit Faculty of Science and Industrial Technology, Prince of Songkla University, Suratthani Campus, Surat Thani 84000, Thailand
  • N. Budmai Faculty of Science and Industrial Technology, Prince of Songkla University, Suratthani Campus, Surat Thani 84000, Thailand
  • S. Kaewnun Faculty of Science and Industrial Technology, Prince of Songkla University, Suratthani Campus, Surat Thani 84000, Thailand

DOI:

https://doi.org/10.11113/amst.v24n1.167

Abstract

A solid oxide fuel cell (SOFC) is a potential energy conversion technology with high efficiency and high fuel impurity tolerance. Its electrolyte layer is a crucial component and a novel ceria-carbonate electrolyte ceramic membrane has been developed for the intermediate and low temperature SOFCs (IT-LT SOFCs). The ceria-carbonate electrolyte can be produced by either a two-steps process which produces microscale particles or a one-step process which produces nanoscale materials. The ceria-carbonate composite ceramic membrane facilitates both of the oxide ion and proton conductions thus this material has a potential to raise the multi-ions transportation and improve performance of IT-LT SOFCs.

References

Marthosa, S. 2012. Improvement of Electrocatalyst Performance in Hydrogen Fuel Cells by Multiscale Modelling. Ph.D. Thesis. University of Manchester.

Phaijit, S., M. Suklueng, S. Marthosa, S. Niyomwas, N. Y. Voo, and A. Kumar. 2019. A Novel Micro-solid Oxide Fuel Cell (ï­-SOFC) for Detecting Methane Content in Biogas. Bulletin of Materials Science. 42(3).

Hong, S., D. Lee, H. Yang, and Y. B. Kim. 2018. Direct Hydrothermal Growth of GDC Nanorods for Low Temperature Solid Oxide Fuel Cells. Applied Surface Science. 444: 430-435.

Tanwar, K., N. Jaiswal, V. D. Bhargavi, K. Bhimani, D. Kumar, and O. Parkash. 2016. Effect of Carbonates Addition on Ce0.80Gd0.20O1.90 (GDC) Nanorods Prepared by Wet Chemical Route for LT-SOFCs. International Journal of Hydrogen Energy. 41(47): 22354-22360.

Li, T., Z. T. Wu, and K. Li. 2014. Single-step Fabrication and Characterisations of Triple-layer Ceramic Hollow Fibres for Micro-tubular Solid Oxide Fuel Cells (SOFCs). Journal of Membrane Science. 449: 1-8.

Huang, J. B., R. F. Gao, Z. Q. Mao, and J. Y. Feng. 2010. Investigation of La2NiO4+ï¤-based Cathodes for SDC-carbonate Composite Electrolyte Intermediate Temperature Fuel Cells. International Journal of Hydrogen Energy. 35(7): 2657-2662.

Mahato, N., A. Gupta, and K. Balani. 2011. Doped Zirconia And Ceria-based Eletrolytes for Solid Oxide Fuel Cells: A Review. Nanomaterials and Energy. 1(NME1): 27-45.

Khan, I., M. I. Asghar, P. D. Lund, and S. Basu. 2017. High Conductive (LiNaK)2CO3-Ce0.85Sm0.15O2 Electrolyte Compositions for IT-SOFC Applications. International Journal of Hydrogen Energy. 42(32): 20904-20909.

Kim, J. H., S. S. Shin, H. S. Noh, J. W. Son, M. Choi, and H. Kim. 2017. Tailoring Ceramic Membrane Structures of Solid Oxide Fuel Cells Via Polymer-assisted Electrospray Deposition. Journal of Membrane Science. 544: 234-242.

Hui, S. Q., J. Roller, S. Yick, X. Zhang, C. Deces-Petit, Y. S. Xie, R. Maric, and D. Ghosh. 2007. A Brief Review of the Ionic Conductivity Enhancement for Selected Oxide Electrolytes. Journal of Power Sources. 172(2): 493-502.

Sun, W. P., Z. Shi, Z. T. Wang, and W. Liu. 2015. Bilayered BaZr0.1Ce0.7Y0.2O3-ï¤/Ce0.8Sm0.2O2-ï¤ Electrolyte Membranes for Solid Oxide Fuel Cells with High Open Circuit Voltages. Journal of Membrane Science. 476: 394-398.

Boden, A., J. Di, C. Lagergren, G. Lindbergh, and C. Y. Wang. 2007. Conductivity of SDC and (Li/Na)2CO3 Composite Electrolytes in Reducing and Oxidising Atmospheres. Journal of Power Sources. 172(2): 520-529.

Jing, Y. F., J. Patakangas, P. D. Lund, and B. Zhu. 2013. An Improved Synthesis Method of Ceria-carbonate based Composite Electrolytes for Low-temperature SOFC Fuel Cells. International Journal of Hydrogen Energy. 38(36): 16532-16538.

Zhu, B., X. G. Liu, M. T. Sun, S. J. Ji, and J. C. Sun. 2003. Calcium Doped Ceria-based Materials for Cost-effective Intermediate Temperature Solid Oxide Fuel Cells. Solid State Sciences. 5(8): 1127-1134.

Huang, H. B., Z. Q. Mao, Z. X. Liu, and C. Wang. 2007. Development of Novel Low-temperature SOFCs with Co-ionic Conducting SDC-carbonate Composite Electrolytes. Electrochemistry Communications. 9(10): 2601-2605.

Ali, S. A. M., A. Muchtar, A. B. Sulong, N. Muhamad, and E. H. Majlan. 2013. Influence of Sintering Temperature on the Power Density of Samarium-doped-ceria Carbonate Electrolyte Composites for Low-temperature Solid Oxide Fuel Cells. Ceramics International. 39(5): 5813-5820.

Ali, S. A. M., R. E. Rosli, A. Muchtar, A. B. Sulong, M. R. Somalu, and E. H. Majlan. 2015. Effect of Sintering Temperature on Surface Morphology and Electrical Properties of Samarium-doped Ceria Carbonate for Solid Oxide Fuel Cells. Ceramics International. 41(1): 1323-1332.

Xu, X., L. Bi, and X. S. Zhao. 2018. Highly-conductive Proton-conducting Electrolyte Membranes with a Low Sintering Temperature for Solid Oxide Fuel Cells. Journal of Membrane Science. 558: 17-25.

Xia, C., Y. Li, Y. Tian, Q. H. Liu, Z. M. Wang, L. J. Jia, Y. C. Zhao, and Y. D. Li. 2010. Intermediate Temperature Fuel Cell with a Doped Ceria-carbonate Composite Electrolyte. Journal of Power Sources. 195(10): 3149-3154.

Asghar, M. I., M. Heikkila, and P. D. Lund. 2017. Advanced Low-temperature Ceramic Nanocomposite Fuel Cells Using Ultra High Ionic Conductivity Electrolytes Synthesized Through Freeze-dried Method and Solid Route. Materials Today Energy. 5: 338-346.

Wang, X. D., Y. Ma, R. Raza, M. Muhammed, and B. Zhu. 2008. Novel Core-shell SDC/amorphous Na2CO3 Nanocomposite Electrolyte for Low-temperature SOFCs. Electrochemistry Communications. 10(10): 1617-1620.

Huang, J. B., Z. Q. Mao, Z. X. Liu, and C. Wang. 2008. Performance of Fuel Cells with Proton-conducting Ceria-based Composite Electrolyte and Nickel-based Electrodes. Journal of Power Sources. 175(1): 238-243.

Huang, W., P. Shuk, and M. Greenblatt. 1997. Properties of Sol-gel Prepared Ce(1-x)Sm(x)O(2-x/2) Solid Electrolytes. Solid State Ionics. 100: 23-27.

Zhu, B. 2009. Solid Oxide Fuel Cell (SOFC) Technical Challenges and Solutions from Nano-aspects. International Journal of Energy Research. 33(13): 1126-1137.

Raza, R., X. D. Wang, Y. Ma, X. R. Liu, and B. Zhu. 2010. Improved Ceria-carbonate Composite Electrolytes. International Journal of Hydrogen Energy. 35(7): 2684-2688.

Gao, Z., R. Raza, B. Zhu, Z.Q. Mao, C. Wang, and Z. X. Liu. 2011. Preparation and Characterization of Sm0.2Ce0.8O1.9/Na2CO3 Nanocomposite Electrolyte for Low-temperature Solid Oxide Fuel Cells. International Journal of Hydrogen Energy. 36(6): 3984-3988.

Zhao, Y. C., Z. R. Xu, C. Xia, and Y. D. Li. 2013. Oxide Ion and Proton Conduction in Doped Ceria-carbonate Composite Materials. International Journal of Hydrogen Energy. 38(3): 1553-1559.

Yin, S. L., Z. P. Ye, C. M. Li, X. W. Chen, and Y. W. Zeng. 2013. Theoretical Description on the Interface-enhanced Conductivity of SDC/LiNa-carbonate Composite Electrolytes. Materials Letters. 92: 78-81.

Li, S. and J. C. Sun. 2010. Electrochemical Performances of NANOCOFC in MCFC Environments. International Journal of Hydrogen Energy. 35(7): 2980-2985.

Zhu, B., I. Albinsson, C. Andersson, K. Borsand, M. Nilsson, and B. E. Mellander. 2006. Electrolysis Studies Based on Ceria-based Composites. Electrochemistry Communications. 8(3): 495-498.

Qin, H. Y., Z. G. Zhu, Q. H. Liu, Y. F. Jing, R. Raza, S. Imran, M. Singh, G. Abbas, and B. Zhu. 2011. Direct Biofuel Low-temperature Solid Oxide Fuel Cells. Energy & Environmental Science. 4(4): 1273-1276.

Amar, I. A., R. Lan, C. T. G. Petit, V. Arrighi, and S. W. Tao. 2011. Electrochemical Synthesis of Ammonia based on a Carbonate-oxide Composite Electrolyte. Solid State Ionics. 182(1): 133-138.

Wade, J. L., C. Lee, A. C. West, and K. S. Lackner. 2011. Composite Electrolyte Membranes for High Temperature CO2 Separation. Journal of Membrane Science. 369(1-2): 20-29.

Downloads

Published

2020-02-26

How to Cite

Marthosa, S., Suklueng, M., Niyomwas, S., Anancharoenwong, E., Ninwijit, T., Budmai, N., & Kaewnun, S. (2020). Ceria-carbonate Electrolyte Ceramic Membrane for Intermediate and Low Temperature Solid Oxide Fuel Cells: A Review. Journal of Applied Membrane Science & Technology, 24(1). https://doi.org/10.11113/amst.v24n1.167

Issue

Section

Articles