Synthesis of GMA/EDMA Uniform Pores Monolith Using Melt blown Polypropylene Nanofibers Templates

Authors

  • Z. Kamin Oil and Gas Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia Energy Research Unit, Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia http://orcid.org/0000-0002-7746-1134
  • N. Ramon Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
  • M. Misson Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
  • C. C. Ken Oil and Gas Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
  • R. Sarbatly Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
  • D. Krishnaiah Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
  • A. Bono Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia

DOI:

https://doi.org/10.11113/amst.v23n3.165

Abstract

Glycidyl methacrylate / ethyl dimethacrylate (GMA/ EDMA) monoliths consisting of pores induced by polypropylene nanofibers (PPNF) were developed. For creating these pores, templating technique was used where the PPNF act as a template. The PPNF were fabricated using a melt blowing technique at various process operations of polymer flowrate, air pressure and die-to-collector distance at ranges of 15 to 30 Hz, 0.15 to 0.3 MPa and 0.20 to 0.6 m respectively designed using a response surface methodology (RSM). Subsequently, a monolith solution was synthesis using the polymerization of GMA and EDMA, with azobisisobutyronitrile (AIBN) as initiator and cyclohexanol as porogen. The PPNF and GMA/ EDMA monoliths were characterized using SEM and melting point instrument. The findings show, PPNF fiber diameter and melting points were in the range of 5 to 14 x 103 nm and 120 to 130 °C respectively. RSM analysis suggests that air pressure and die-to-collector distance could be an important factor for  PPNF final diameter. Morphology studies demonstrate that GMA/ EDMA monolith have been successfully acquired mesoporous structure and creating uniform pores by PPNF template produce at 22.5 Hz, 0.22 MPa and 0.40 m. As a conclusion, the PPNF can be proposed as a template to prepare monolith having uniform pores.

References

Couck, S., J. Cousin-saint-remi, S. Van Der Perre, G. V Baron, C. Minas, P. Ruch and J.F.M. Denayer. 2018. Microporous and Mesoporous Materials 3D-Printed SAPO-34 Monoliths for Gas Separation 1. Microporous and Mesoporous Materials. 255: 185-191.

Grebenyuk, Y., H. X. Zhang, M. Wilhelm, K. Rezwan and M. E. Dreyer. 2017. Journal of the European Ceramic Society Wicking into Porous Polymer-Derived Ceramic Monoliths Fabricated by Freeze-Casting 1. Journal of the European Ceramic Society. 37(5): 1993-2000.

Lin, P., L. Meng, Y. Huang and L. Liu. 2016. Colloids and Surfaces A : Physicochemical and Engineering Aspects Synthesis of Porous Polyurea Monoliths Assisted by Centrifugation as Adsorbents for Water Purification. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 506: 87-95.

Wang, L., F. Ai, Y. Liu and Y. Liu. 2018. Porous Polyamide Monolith by Continuous Solution Foaming as Reusable Oils Aand Organic Solvents Absorbent. Materials Letters. 213: 44-47.

Avila, P., M. Montes and E. E. Mir. 2005. Monolithic Reactors for Environmental Applications A Review on Preparation Technologies. Chemical Engineering Journal. 109(2005): 11-36

Taubert, M., J. Beckmann, A. Lange, D. Enke and O. Klepel. 2014. Attempts to Design Porous Carbon Monoliths using Porous Concrete as a Template. Microporous and Mesoporous Materials. 197: 58-62.

Svec, F. 2010. Porous Polymer Monoliths: Amazingly Wide Variety of Techniques Enabling Their Preparation. Journal of Chromatography A. 1217(6): 902-924.

Viklund, C., F. Svec, J. M. J. Fréchet and K. Irgum. 1996. Monolithic, “Moldedâ€, Porous Materials with High Flow Characteristics for Separations, Catalysis, or Solid-phase Chemistry: Control of Porous Properties during Polymerization. Chemistry of Materials. 8(3): 744-750.

Vlakh, E. G. and T. B. Tennikova. 2007. Preparation of Methacrylate Monoliths. Journal of Separation Science. 30(17): 2801-2813.

Namera, A., A. Nakamoto, T. Saito and S. Miyazaki. 2011. Monolith As A New Sample Preparation Material: Recent Devices and Applications. Journal of Separation Science. 34(8): 901-924.

Nischang, I. 2013. Porous Polymer Monoliths: Morphology, Porous Properties, Polymer Nanoscale Gel Structure and Their Impact on Chromatographic Performance. Journal of Chromatography A. 1287: 39-58.

Ongkudon, C. M. and C. Wong. 2014. Challenges and Strategies in the Preparation of Large-volume Polymer-based Monolithic Chromatography Adsorbents. Journal of Sep. 37: 455-464.

Guillemot, F., A. Brunet-bruneau, E. Bourgeat-lami, J. Boilot, E. Barthel and T. Gacoin. 2013. Percolation Transition in the Porous Structure of Latex-templated Silica Monoliths. Microporous and Mesoporous Materials. 172: 146-150.

Reneker, D. H. and I. Chun, 1996. Nanometre Diameter Fibres Of Polymer, Produced by Electrospinning. Nanotechnology. 7(3): 216-223.

Wu, J., N. Wang, Y. Zhao and L. Jiang. 2013. Electrospinning of Multilevel Structured Functional Micro-/Nanofibers and Their Applications. Journal of Materials Chemistry A. 1(25): 7290.

Sarbatly, R., D. Krishnaiah and Z. Kamin. 2016. A Review of Polymer Nanofibres by Electrospinning and Their Application in Oil-water Separation for Cleaning Up Marine Oil Spills. Marine Pollution Bulletin. 106(1-2): 8-16.

Kamin, Z., A. Bono and L.Y. Leong. 2017. Simulation and Optimization of the Utilization of Triethylene Glycol in a Natural Gas Dehydration Process. Chemical Product and Process Modeling. 12(4).

Bono, A., S. M. Anisuzzaman and O.W. Ding. 2014. Effect of Process Conditions on the Gel Viscosity and Gel Strength of Semi-refined Carrageenan (SRC) Produced from Seaweed (Kappaphycus Alvarezii). Journal of King Saud University - Engineering Sciences. 26(1): 3-9.

Hassan, M. A., B. Y. Yeom, A. Wilkie, B. Pourdeyhimi and S. A. Khan. 2013. Fabrication of Nanofiber Meltblown Membranes and Their Filtration Properties1. Journal of Membrane Science. 427: 336-344.

Ellison, C. J., A. Phatak, D. W. Giles, C. W. Macosko and F. S. Bates. 2007. Melt Blown Nanofibers: Fiber Diameter Distributions and Onset of Fiber Breakup. Polymer. 48(11): 3306-3316.

Uppal, R., G. Bhat, C. Eash and K. Akato. 2013. Meltblown Nanofiber Media for Enhanced Quality Factor. Fibers and Polymers. 14(4): 660-668.

Tan, D. H., C. Zhou, C. J. Ellison, S. Kumar, C. W. Macosko and F. S. Bates. 2010. Meltblown Fibers: Influence of Viscosity and Elasticity on Diameter Distribution. Journal of Non-Newtonian Fluid Mechanics. 165(15-16): 892-900.

Safranski, D. L., J. M. Boothby, C. N. Kelly, K. Beatty, N. Lakhera, C. P. Frick, A. Lin, R. E. Guldberg and J. C. Griffis. 2016. Thermo-mechanical Behavior and Structure of Melt Blown Shape-memory Polyurethane Nonwovens. Journal of the Mechanical Behavior of Biomedical Materials. 62: 545-555.

Versus, M. E., n.d. Polypropylene Nanofibers.

Chan, Y. W., T. Kansil and C. M. Ongkudon. 2017. Analytical and Preparative Polymethacrylate Monolith Fabrication : Effect of Porogen Content and Column Size on Pore Morphology. Colloid and Polymer Science. 295(12): 2373-2382.

Downloads

Published

2019-09-15

How to Cite

Kamin, Z., Ramon, N., Misson, M., Ken, C. C., Sarbatly, R., Krishnaiah, D., & Bono, A. (2019). Synthesis of GMA/EDMA Uniform Pores Monolith Using Melt blown Polypropylene Nanofibers Templates. Journal of Applied Membrane Science & Technology, 23(3). https://doi.org/10.11113/amst.v23n3.165

Issue

Section

Articles