Fabrication and Performance Evaluation of Integrated Solar-Driven Membrane Distillation System with Serpentine-shape of Flat Plate Solar Collector for Seawater Desalination

Authors

  • M. A. H. M. Hanoin Faculty of Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak 26300 Kuantan, Pahang, Malaysia
  • N. S. Mohammed Faculty of Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak 26300 Kuantan, Pahang, Malaysia
  • M. A. I. Z. Arris Faculty of Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak 26300 Kuantan, Pahang, Malaysia
  • A. I. A. Bakar Faculty of Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak 26300 Kuantan, Pahang, Malaysia
  • N. M. Mokhtar Faculty of Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak 26300 Kuantan, Pahang, Malaysia
  • A. A. Razak Faculty of Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak 26300 Kuantan, Pahang, Malaysia

DOI:

https://doi.org/10.11113/amst.v23n3.163

Abstract

Solar-powered membrane distillation (SPMD) system has gained its popularity in desalination application for past decade credit to the system efficiency in producing pure water and the utilization of renewable energy. However, most of the past SPMD works used commercial solar thermal collector (STC) as the thermal energy supply to the feed solution and the study only focused on the performance of the system in terms of flux and salt rejection. In this work, a self-made flat plate solar collector (FPSC) with the serpentine-shape pipe was designed and fabricated to study the effect of the STC towards the membrane performance. Before testing, a simulation work of the fluid flow inside the serpentine-shape pipe of the FPSC was analyzed using NX 10.0 computer-aided design simulation. After that, the efficiency of the self-made FPSC system was tested directly to sunlight in order to identify the maximum irradiance and the temperature of the feed solution. Due to the fluctuation of solar irradiance, the experimental setup of the SPMD system was tested using a solar simulator, and the performance was compared with the membrane distillation (MD) system without integration with FPSC system. Based on the simulation data, it can be concluded that the heat losses across the pipe are due to the slower fluid velocity and sudden pressure drop, which attributed to centripetal force and pressure differences. Meanwhile, the outdoor evaluation data showed that the temperatures of collector and water inside the feed tank could reach up to 84°C and 64°C, respectively when the maximum irradiance of 938 W/m2 was applied. For the performance evaluation between with and without the self-made FPSC system, it can be seen that only marginal difference can be observed for the permeate flux and salt rejection with an average difference of 6.06% and 1.29%, respectively.

References

M. A. E. R. Abu-Zeid, Y. Zhang, H. Dong, L. Zhang, H. L. Chen, and L. Hou. 2015. A Comprehensive Review of Vacuum Membrane Distillation Technique. Desalination. 356: 1-14.

D. González, J. Amigo, and F. Suárez. 2017. Membrane Distillation: Perspectives for Sustainable and Improved Desalination. Renewable and Sustainable Energy Reviews. 80: 238-259.

Q. Chen, Y. Li, and K. J. Chua. 2016. On the Thermodynamic Analysis of a Novel Low-grade Heat Driven Desalination System. Energy Convers. Manag. 128: 145-159.

L. M. Camacho, L. Dumée, J. Zhang, J. D. Li, M. Duke, J. Gomez, and S. Gray. 2013. Advances in Membrane Distillation for Water Desalination and Purification Applications. Water (Switzerland). 5: 94-196.

M. Khayet and T. Matsuura. 2011. Membrane Distillation Principles and Applications. Elsevier.

A. Alkhudhiri, N. Darwish, and N. Hilal. 2012. Membrane Distillation: A comprehensive Review. Desalination. 287: 2-18.

E. Drioli, A. Ali, and F. Macedonio. 2015. Membrane Distillation: Recent Developments and Perspectives. Desalination. 356: 56-84.

R. Schwantes, A. Cipollina, F. Gross, J. Koschikowski, D. Pfeifle, M. Rolletschek, and V. Subiela. 2013. Membrane Distillation: Solar and Waste Heat Driven Demonstration Plants for Desalination. Desalination. 323: 93-106.

M. Khayet. 2011. Membranes and Theoretical Modeling of Membrane Distillation: A Review. Adv. Colloid Interface Sci. 164: 56-88.

F. Nematollahi, A. Rahimi, and T. T. Gheinani. 2013. Experimental and Theoretical Energy and Exergy Analysis for a Solar Desalination System. Desalination. 317: 23-31.

J. Koschikowski, M. Wieghaus, M. Rommel, V. S. Ortin, B. P. Suarez, and J. R. Betancort Rodríguez. 2009. Experimental Investigations on Solar Driven Stand-alone Membrane Distillation Systems for Remote Areas. Desalination. 248: 125-131.

R. G. Raluy, R. Schwantes, V. J. Subiela, B. Peñate, G. Melián, and J. R. Betancort. 2012. Operational Experience of a Solar Membrane Distillation Demonstration Plant in Pozo Izquierdo-Gran Canaria Island (Spain). Desalination. 290: 1-13.

H. E. S. Fath, S. M. Elsherbiny, A. A. Hassan, M. Rommel, M. Wieghaus, J. Koschikowski, and M. Vatansever. 2008. PV and Thermally Driven Small-scale, Stand-alone Solar Desalination Systems with Very Low Maintenance Needs. Desalination. 225: 1-3.

T. C. Chen and C. D. Ho. 2010. Immediate Assisted Solar Direct Contact Membrane Distillation in Saline Water Desalination J. Memb. Sci. 358: 122-130.

F. Banat, N. Jwaied, M. Rommel, J. Koschikowski, and M. Wieghaus. 2007. Performance Evaluation of the "large SMADES" Autonomous Desalination Solar-driven Membrane Distillation Plant in Aqaba, Jordan. Desalination. 217: 17-28.

E. K. Summers and J. H. Lienhard. 2013. Experimental Study of Thermal Performance in Air Gap Membrane Distillation Systems, Including the Direct Solar Heating of Membranes. Desalination. 330: 100-111.

Y. Tian and C. Y. Zhao. 2013. A Review of Solar Collectors and Thermal Energy Storage in Solar Thermal Applications. Appl. Energy. 104: 538-553.

A. Jamar, Z. A. A. Majid, W. H. Azmi, M. Norhafana, and A. A. Razak. 2016. A Review of Water Heating System for Solar Energy Applications. International Communications in Heat and Mass Transfer. 76: 178-187.

M. S. Hossain, R. Saidur, H. Fayaz, N. A. Rahim, M. R. Islam, J. U. Ahamed, and M. M. Rahman. 2011. Review on Solar Water Heater Collector and Thermal Energy Performance of Circulating Pipe. Renewable and Sustainable Energy Reviews. 15: 3801-3812.

Z. Wang, W. Yang, F. Qiu, X. Zhang, and X. Zhao. 2015. Solar Water Heating: From Theory, Application, Marketing and Research. Renewable and Sustainable Energy Reviews. 41: 68-84.

M. S. Hossain, A. K. Pandey, J. Selvaraj, N. Abd Rahim, A. Rivai, and V. V. Tyagi. 2019. Thermal Performance Analysis of Parallel Serpentine Flow Based Photovoltaic/Thermal (PV/T) System Under Composite Climate of Malaysia. Appl. Therm. Eng. 153: 861-871.

J. Zhou, H. Ke, and X. Deng. 2018. Experimental and CFD Investigation on Temperature Distribution of a Serpentine Tube Type Photovoltaic/Thermal Collector. Sol. Energy. 174: 735-742.

D. Wang, X. Wang, Y. Chen, W. Kang, and Y. Liu. 2019. Experimental Study on Performance Test of Serpentine Flat Plate Collector with Different Pipe Parameters and a New Phase Change Collector. Energy Procedia. 158: 738-743.

D. E. Moudjeber, A. Ruiz-Aguirre, D. Ugarte-Judge, H. Mahmoudi, and G. Zaragoza. 2016. Solar Desalination by Air-Gap Membrane Distillation: A Case Study from Algeria. Desalin. Water Treat. 57: 22718-22725.

J. D. Gil, L. Roca, A. Ruiz-Aguirre, G. Zaragoza, and M. Berenguel. 2018. Optimal operation of a Solar Membrane Distillation Pilot Plant via Nonlinear Model Predictive Control. Comput. Chem. Eng. 109: 151-165.

Q. Ma, A. Ahmadi, and C. Cabassud. 2018. Direct Integration of a Vacuum Membrane Distillation Module within a Solar Collector for Small-scale Units Adapted to Seawater Desalination In Remote Places: Design, Modeling & Evaluation of a Flat-Plate Equipment. J. Memb. Sci. 564: 617-633.

Y. Li and D. Jing. 2017. Investigation of the Performance of Photovoltaic/thermal System by a Coupled TRNSYS and CFD Simulation. Sol. Energy. 143: 100-112.

J. Zhou, Q. Yi, Y. Wang, and Z. Ye. 2015. Temperature Distribution of Photovoltaic Module Based on Finite Element Simulation. Sol. Energy. 111: 97-103.

W. J. Lau and A. F. Ismail. 2009. Theoretical Studies on the Morphological and Electrical Properties of Blended PES/SPEEK Nanofiltration Membranes using Different Sulfonation Degree of SPEEK. J. Memb. Sci. 334: 30-42.

W. Wang and B. Laumert. 2014. Simulate a ‘Sun’ for Solar Research: A Literature Review of Solar Simulator Technology. KTH Royal Institute of Technology. 37.

J. Sarwar, G. Georgakis, R. LaChance, and N. Ozalp. 2014. Description and Characterization of an Adjustable Flux Solar Simulator for Solar Thermal, Thermochemical and Photovoltaic Applications. Sol. Energy. 100: 179-194.

N. M. Mokhtar, W. J. Lau, and A. F. Ismail. 2015. Effect of Feed Temperature on the DCMD Performances in Treating Synthetic Textile Wastewater. Adv. Mater. Res. 1113: 776-781.

N. M. Mokhtar, W. J. Lau, A. F. Ismail, W. Youravong, W. Khongnakorn, and K. Lertwittayanon. 2015. Performance Evaluation of Novel PVDF-Cloisite 15A Hollow Fiber Composite Membranes for Treatment of Effluents Containing Dyes and Salts Using Membrane Distillation. RSC Adv. 5: 38011-38020.

Downloads

Published

2019-09-15

How to Cite

Hanoin, M. A. H. M., Mohammed, N. S., Arris, M. A. I. Z., Bakar, A. I. A., Mokhtar, N. M., & Razak, A. A. (2019). Fabrication and Performance Evaluation of Integrated Solar-Driven Membrane Distillation System with Serpentine-shape of Flat Plate Solar Collector for Seawater Desalination. Journal of Applied Membrane Science &Amp; Technology, 23(3). https://doi.org/10.11113/amst.v23n3.163

Issue

Section

Articles