Preparation of Blend Hydrophilic Polyetherimide-Cellulose Acetate Hollow Fiber Membrane for Oily Wastewater Treatment
DOI:
https://doi.org/10.11113/amst.v23n3.159Abstract
Membrane separation is known as an efficient technique for oily wastewater treatment. In the present study, cellulose acetate (CA) was introduced into the polyetherimide (PEI) solution in order to enhance hydrophilicity and the membrane structure for oil–water separation. The hollow fiber membranes were prepared via a phase-inversion process. The membranes were characterized by N2 permeation test, water contact angle, pure water flux and field emission scanning electron microscopy (FESEM). The blend PEI-CA membrane presented larger finger-likes morphology with a thicker outer skin layer. From N2 permeation test, the blend membrane showed effective surface porosity of 697 m-1 and mean pore size of 4.5 nm. The higher water flux and lower resistance of the blend PEI-CA membrane were related to the higher hydrophilicity and the open structure. Due to small pore sizes and enhanced hydrophilicity, the blend membrane showed a stable oil rejection of over 98% and water flux of 18 L/m2 h after 100 min of the separation operation. The developed PEI-CA membrane can potentially be applied in petrochemical and refinery industries for oily wastewater treatment.
References
L. Yu, M. Han, F. He. 2017. A Review of Treating Oily Wastewater. Arab. J. Chem. 10: S1913-S1922.
A. Mansourizadeh, A. Javadi Azad. 2014. Preparation of Blend Polyethersulfone/Cellulose Acetate/Polyethylene Glycol Asymmetric Membranes for Oil–Water Separation. J. Polym. Res. 21: 375-385.
K. Scott. 2001. Crossflow Microfiltration of Water-in-oil Emulsions Using Corrugated Membranes. Sep. Purif. Technol. 22-23: 431-441.
A. B. Koltuniewicz, R. W. Field, T. C. Arnot. 1995. Cross-flow and Dead-end Microfiltration of Oily-water Emulsion. Part I: Experimental Study and Analysis of Flux Decline. J. Membr. Sci. 102: 193-207.
B. Chakrabarty, A. K. Ghoshal, M. K. Purkait. 2008. Ultrafiltration of Stable Oil-in-water Emulsion by Polysulfone Membrane. J. Membr. Sci. 325: 427-437.
S. N. W. Ikhsan, N. Yusof, F. Aziz, N. Misdan, A. F. Ismail, W.-J. Lau, J. Jaafar, W. N. W. Salleh, N. H. H. Hairom. 2018. Efficient Separation of Oily Wastewater using Polyethersulfone Mixed Matrix Membrane Incorporated with Halloysite Nanotube-hydrous Ferric Oxide Nanoparticle. Sep. Purif. Technol. 199: 161-169.
P. S. Goh, A. F. Ismail. 2018. A Review on Inorganic Membranes for Desalination and Wastewater Treatment. Desalination. 434: 60-80.
N. M. Kocherginsky, C. L. Tan, W. F. Lu. 2003. Demulsification of Water-in-oil Emulsions via Filtration through a Hydrophilic Polymer Membrane. J. Membr. Sci. 220: 117-128.
L. Li, L. Ding, Z. Tu, Y. Wan, D. Clausse, J.-L. Lanoisellé. 2009. Recovery of Linseed Oil Dispersed within an Oil-in-water Emulsion using Hydrophilic Membrane by Rotating Disk Filtration System. J. Membr. Sci. 342: 70-79.
J. Zhoua, Q. Changa, Y. Wang, J. Wang, G. Meng. 2010. Separation of Stable Oil–water Emulsion by the Hydrophilic Nano-sized ZrO2 Modified Al2O3 Microfiltration Membrane. Sep. Purif. Technol. 75: 243-248.
R. Mahendran, R. Malaisamy, D. R. Mohan. 2004. Cellulose Acetate and Polyethersulfone Blend Ultrafiltration Membranes. Part I: Preparation and Characterizations. Polym. Adv. Technol. 15: 149-157.
K. Mu, D. Zhang, Z. Shao, D. Qin, Y. Wang, S. Wang. 2017. Enhanced Permeability and Antifouling Performance of Cellulose Acetate Ultrafiltration Membrane Assisted by L-Dopa Functionalized Halloysite Nanotubes. Carbohydr. Polym. 174: 688-696.
A. El-Gendi, H. Abdallah, A. Amin, S. K. Amin. 2017. Investigation of Polyvinylchloride and Cellulose Acetate Blend Membranes for Desalination. J. Mol. Struct. 1146: 14-22.
C. Lavanya, R. G. Balakrishna, K. Soontarapa, M. S. Padaki. 2019. Fouling Resistant Functional Blend Membrane for Removal of Organic Matter and Heavy Metal Ions. J. Environ. Manag. 232: 372-381.
Z. Sun, F. Chen. 2016. Hydrophilicity and Antifouling Property of Membrane Materials from Cellulose Acetate/Polyethersulfone in DMAc. Int. J. Biol. Macromol. 91: 143-150.
M. Kumar, T. S. Rao, A. M. Isloor, G. P. Syed Ibrahim, Inamuddin, N. Ismail, A.F. Ismail, A. M. Asiri. 2019. Use of Cellulose Acetate/Polyphenylsulfone Derivatives to Fabricate Ultrafiltration Hollow Fiber Membranes for the Removal of Arsenic from Drinking Water. Int. J. Biol. Macromol. 129: 715-727.
A. Jayalakshmi, S. Rajesh, D. Mohan. 2012. Fouling Propensity and Separation Efficiency of Epoxidated Polyethersulfone Incorporated Cellulose Acetate Ultrafiltration Membrane in the Retention of Proteins. Appl. Surf. Sci. 258: 9770-9781.
A. Rahimpour, S. S. Madaeni. 2007. Polyethersulfone (PES)/Cellulose Acetate Phthalate (CAP) Blend Ultrafiltrationmembranes: Preparation, Morphology, Performance and Antifouling Properties. J. Membr. Sci. 305: 299-312.
A. F. Ismail, I. R. Dunkinb, S. L. Gallivanb, S. J. Shilton. 1999. Production of Super Selective Polysulfone Hollow Fiber Membranes for Gas Separation. Polymer. 40: 6499-6506.
J. M. S. Henis, M. K. Tripodi. 1981. Composite Hollow Fiber Membranes for Gas Separation: the Resistance Model Approach. J. Membr. Sci. 8: 233-246.
L. P. Cheng. 1999. Effect of Temperature on the Formation of Microporous PVDF Membranes by Precipitation from 1-octanol/DMF/PVDF and water/DMF/PVDF Systems. Macromolecules. 32: 6668-6674.
E. Fontananova, J. C. Jansen, A. Cristiano, E. Curcio, E. Drioli. 2006. Effect of Additives in the Casting Solution on the Formation of PVDF Membranes. Desalination. 192: 190-197.
R. S. Faibish, Y. Cohen. 2001. Fouling-resistant Ceramic-supported Polymer Membranes for Ultrafiltration of Oil-In-Water Microemulsions. J. Membr. Sci. 185: 129-143.
P. Lipp, C. H. Lee, A. G. Fane, C. J. D. Fell. 1988. A Fundamental Study of the Ultrafiltration of Oil-water Emulsions. J. Membr. Sci. 36: 161-177.
Downloads
Published
How to Cite
Issue
Section
License
Copyright of articles that appear in Journal of Applied Membrane Science & Technology belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.