Computational Modeling of Coupled Free and Porous Media Flow for Membrane-based Filtration Systems: A Review


  • Antonios Parasyris Department of Mathematical Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
  • Christopher Brady Chemical Engineering Department, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
  • Diganta Bhusan Das Loughborough University, UK
  • Marco Discacciati Department of Mathematical Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK



We review different mathematical models proposed in literature to describe fluid-dynamic aspects in membrane-based water filtration systems. Firstly, we discuss the societal impact of water filtration, especially in the context of developing countries under emergency situations, and then review the basic concepts of membrane science that are necessary for a mathematical description of a filtration system. Secondly, we categorize the mathematical models available in the literature as (a) microscopic, if the pore-scale geometry of the membrane is accounted for; (b) reduced, if the membrane is treated as a geometrically lower-dimensional entity due to its small thickness compared to the free flow domain; (c) mesoscopic, if the characteristic geometrical dimension of the free flow domain and the porous domain is the same, and a multi-physics problem involving both incompressible fluid flow and porous media flow is considered. Implementation aspects of mesoscopic models in CFD software are also discussed with the help of relevant examples.


N. Shamsuddin, D. B. Das, and V. M. Starov. 2016. Membrane-based Point-of-use Water Treatment (PoUWT) System in Emergency Situations. Sep. Purif. Rev. 45(1): 50-67.

D. Lantagne and T. Clasen. 2013. Effective Use of Household Water Treatment and Safe Storage in Response to the 2010 Haiti Earthquake. Am. J. Trop. Med. Hyg. 89(3): 426-433.

B. Michen, F. Meder, A. Rust, J. Fritsch, C. Aneziris, and T. Graule. 2012. Virus Removal in Ceramic Depth Filters Based on Diatomaceous Earth. Environ. Sci. Technol. 46(2): 1170-1177.

B. A. Ferrier and J. T. Spickett. 2007. Natural Disasters in Developing Countries: An Environmental Health Perspective. Asia-Pac. J. Public Health. 19(1 suppl): 18-24.

N. Shamsuddin, C. Cao, V. M. Starov, and D. B. Das. 2016. A Comparative Study between Stirred Dead End and Circular Flow in Microfiltration of China Clay Suspensions. Water Sci. Technol.- Water Supply. 16: 481-492.

S. Metsämuuronen, M. Sillanpää, A. Bhatnagar, and M. Mänttäri. 2014. Natural Organic Matter Removal from Drinking Water by Membrane Technology. Sep. Purif. Rev. 43(1): 1-61.

M. Peter-Varbanets, C. Zurbrügg, C. Swartz, and W. Pronk. 2009. Decentralized Systems for Potable Water and the Potential of Membrane Technology. Water Res. 43(2): 245-265.

R. Sondhi, R. Bhave, and G. Jung. 2003. Applications and Benefits of Ceramic Membranes. Membrane Technology. 2003(11): 5-8.

R. W. Baker. 2012. Membrane Technology and Applications. Wiley.

E. S. Tarleton and R. J. Wakeman. 2008. Dictionary of Filtration and Separation. Filtration Solutions.

R. Wakeman and S. Tarleton. 2005. Solid/Liquid Separation: Principles of Industrial Filtration. Elsevier Science.

J. Mulder. 1996. Basic Principles of Membrane Technology. Springer.

P. Bacchin, D. Si-Hassen, V. Starov, M. J. Clifton, and P. Aimar. 2002. A Unifying Model for Concentration Polarization, Gel-layer Formation and Particle Deposition in Crossflow Membrane Filtration of Colloidal Suspensions. Chem. Eng. Sci. 57(1): 77-91.

J. Mendret, C. Guigui, P. Schmitz, and C. Cabassud. 2009. In Situ Dynamic Characterisation of Fouling Under Different Pressure Conditions during Dead-end Filtration: Compressibility Properties Of Particle Cakes. J. Membr. Sci. 333(1): 20-29.

B. Blankert, B. Betlem, and B. Roffel. 2006. Dynamic Optimization of a Dead-end Filtration Trajectory: Blocking Filtration Laws. J. Membr. Sci. 285(1): 90-95.

A. Gugliuzza. 2015. Membrane Wettability. In E. Drioli and L. Giorno, (Editor). Encyclopedia of Membranes. Springer.

C. E. Goodyer and A. L. Bunge. 2012. Mass Transfer through Membranes with Surface Roughness. J. Membr. Sci. 409-410: 127-136.

H. Suhaimi, S. Wang, T. Thornton, and D. B. Das. 2015. On Glucose Diffusivity of Tissue Engineering Membranes and Scaffolds. Chem. Eng. Sci. 126: 244-256.

W. R. Dean. 1928. Fluid Motion in a Curved Channel. Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci. 121(787): 402-420.

N. Nivedita, P. Ligrani, and Papautsky. 2017. Dean Flow Dynamics in Low-aspect Ratio Spiral Microchannels. Sci. Rep. 7(44072).

G. Belfort. 1989. Fluid Mechanics in Membrane Filtration: Recent Developments. J. Membr. Sci. 40(2): 123-147.

B. Olayiwola and P. Walzel. 2009. Effects of In-phase Oscillation of Retentate and Filtrate in Crossflow Filtration at Low Reynolds Number. J. Membr. Sci. 345(1): 36-46.

P. Wei, K. Zhang, W. Gao, L. Kong, and R. Field. 2013. CFD Modeling of Hydrodynamic Characteristics of Slug Bubble Flow in a Flat Sheet Membrane Bioreactor. J. Membr. Sci. 445: 15-24.

T. Taha and Z. F. Cui. 2002. CFD Modelling of Gas-sparged Ultrafiltration in Tubular Membranes. J. Membr. Sci. 210(1): 13-27.

S. Ahmed, M. Seraji, J. Jahedi, and M. A. Hashib. 2012. Application of CFD for Simulation of a Baffled Tubular Membrane. Chem. Eng. Res. Des. 90(5): 600-608.

H. S. Abid, D. J. Johnson, R. Hashaikeh, and N. Hilal. 2017. A Review of Efforts to Reduce Membrane Fouling by Control of Feed Spacer Characteristics. Desalination. 420: 384-402.

M. Shakaib, S. M. F. Hasani, and M. Mahmood. 2007. Study on the Effects of Spacer Geometry in Membrane Feed Channels using Three-dimensional Computational Flow Modeling. J. Membr. Sci. 297(1): 74-89.

C. P. Koutsou, S. G. Yiantsios, and A. J. Karabelas. 2007. Direct Numerical Simulation of Flow in Spacer-filled Channels: Effect of Spacer Geometrical Characteristics. J. Membr. Sci. 291(1): 53-69.

C. P. Koutsou and A. J. Karabelas. 2015. A Novel Retentate Spacer Geometry for Improved Spiral Wound Membrane (SWM) Module Performance. J. Membr. Sci. 488: 129-142.

K. K. Lau, M. Z. Abu Bakar, L. Ahmad, and T. Murugesan. 2009. Feed Spacer Mesh Angle: 3D Modeling, Simulation and Optimization based on Unsteady Hydrodynamic in Spiral Wound Membrane Channel. J. Membr. Sci. 343(1): 16-33.

G. A. Fimbres-Weihs and D. E. Wiley. 2010. Review of 3D CFD Modeling of Flow and Mass Transfer in Narrow Spacer-filled Channels in Membrane Modules. Chem. Eng. Process. 49(7): 759-781.

G. Belfort and N. Nagata. 1985. Fluid Mechanics and Crossflow Filtration: Some Thoughts. Desalination. 53(1): 57-79.

P. Schmitz, D. Houi, and A. Wandelt. 1992. Hydrodynamic Aspects of Crossflow Microfiltration. Analysis of Particle Deposition at the Membrane Surface. J. Membr. Sci. 71(1): 29-40.

B. Gu, C. S. Adjiman, and X. Y. Xu. 2017. The Effect of Feed Spacer Geometry on Membrane Performance and Concentration Polarisation based on 3D CFD Simulations. J. Membr. Sci. 527: 78-91.

A. L. Ahmad, K. K. Lau, and M. Z. Abu Bakar. 2005. Impact of Different Spacer Filament Geometries on Concentration Polarization Control in Narrow Membrane Channel. J. Membr. Sci. 262: 138-152.

A. S. Berman. 1953. Laminar Flow in Channels with Porous Walls. J. Appl. Phys. 24(9): 1232-1235.

C. Kleinstreuer and M. S. Paller. 1983. Laminar Dilute Suspension Flows in Plate-and-frame Ultrafiltration Units. AICHE J. 29(4): 529-533.

L. Huang and M. T. Morrissey. 1999. Finite Element Analysis as a Tool for Crossflow Membrane Filter Simulation. J. Membr. Sci. 155(1): 19-30.

V. Nassehi. 1998. Modelling of Combined Navier-stokes and Darcy Flows in Crossflow Membrane Filtration. Chem. Eng. Sci. 53(6): 1253-1265.

C. J. Richardson and V. Nassehi. 2003. Finite Element Modelling of Concentration Profiles in Flow Domains with Curved Porous Boundaries. Chem. Eng. Sci. 58(12): 2491-2503.

S. Wardeh and H. P. Morvan. 2008. CFD Simulations of Flow and Concentration Polarization in Spacer-filled Channels for Application to Water Desalination. Chem. Eng. Res. Des. 86(10): 1107-1116.

D. F. Fletcher and D. E. Wiley. 2004. A Computational Fluids Dynamics Study of Buoyancy Effects in Reverse Osmosis. J. Membr. Sci. 245(1): 175-181.

P. Schmitz and M. Prat. 1995. 3-D Laminar Stationary Flow Over a Porous Surface with Suction: Description at Pore Level. AICHE J. 41(10): 2212-2226.

E. Lyster and Y. Cohen. 2007. Numerical Study of Concentration Polarization in a Rectangular Reverse Osmosis Membrane Channel: Permeate Flux Variation and Hydrodynamic End Effects. J. Membr. Sci. 303(1): 140-153.

P. Schausberger, N. Norazman, H. Li, V. Chen, and A. Friedl. 2009. Simulation of Protein Ultrafiltration using CFD: Comparison of Concentration Polarisation and Fouling Effects with Filtration and Protein Adsorption Experiments. J. Membr. Sci. 337(1): 1-8.

K. Damak, A. Ayadi, B. Zeghmati, and P. Schmitz. 2004. A New Navier-Stokes and Darcy’s Law Combined Model for Fluid Flow in Crossflow Filtration Tubular Membranes. Desalination. 161(1): 67-77.

Y. M. J. Chew, W. R. Paterson, and D. I. Wilson. 2007. Fluid Dynamic Gauging: A New Tool to Study De- Position on Porous Surfaces. J. Membr. Sci. 296(1): 29-41.

V. Y. Lister, C. Lucas, P. W. Gordon, Y. M. Chew, and D. I. Wilson. 2011. Pressure Mode Fluid Dynamic Gauging for Studying Cake Build-up in Crossflow Microfiltration. J. Membr. Sci. 366(1): 304-313.

V. Geraldes, V. Semião, and M. Norberta de Pinho. 2001. Flow and Mass Transfer Modelling of Nanofiltration. J. Membr. Sci. 191(1): 109-128,

M. A. Monfared, N. Kasiri, A. Salahi, and T. Mohammadi. 2012. Modeling Ultrafiltration of Gelatin-water Suspension by Computational Fluid Dynamics. Chem. Eng. Res. Des. 90(8): 1098-1104.

H. M. Yeh and T. W. Cheng. 1999. Analysis of the Slip Effect on the Permeate Flux in Membrane Ultrafiltration. J. Membr. Sci. 154(1): 41-51,

G. S. Beavers and D. D. Joseph. 1967. Boundary Conditions at a Naturally Permeable Wall. J. Fluid Mech. 30: 197-207.

M. F. Gruber, C. J. Johnson, C. Y. Tang, M. H. Jensen, L. Yde, and C. Hélix-Nielsen. 2011. Computational Fluid Dynamics Simulations of Flow and Concentration Polarization in Forward Osmosis Membrane Systems. J. Membr. Sci. 379(1): 488-495.

E. V. Mosina. 2010. Numerical Study of Flow at a Liquid-porous Medium Interface. Theor. Found. Chem. Eng. 44(5): 679-685.

M. Kostoglou and A. J. Karabelas. 2009. On the Fluid Mechanics of Spiral-wound Membrane Modules. Ind. Eng. Chem. Res. 48(22): 10025-10036.

Z. Jalilvand, F. Z. Ashtiani, A. Fouladitajar, and H. Rezaei. 2014. Computational Fluid Dynamics Modeling and Experimental Study of Continuous and Pulsatile Flow In Flat Sheet Microfiltration Membranes. J. Membr. Sci. 450: 207-214.

A. J. Karabelas, M. Kostoglou, and C. P. Koutsou. 2015. Modeling of Spiral Wound Membrane Desalination Modules and Plants – Review and Research Priorities. Desalination. 356: 165-186.

H. Lotfiyan, F. Z. Ashtiani, A. Fouladitajar, and S. B. Armand. 2014. Computational Fluid Dynamics Modeling and Experimental Studies of Oil-in-Water Emulsion Microfiltration in a Flat Sheet Membrane Using Eulerian Approach. J. Membr. Sci. 472: 1-9.

G. Keir and V. Jegatheesan. 2014. A Review of Computational Fluid Dynamics Applications in Pressure-driven Membrane Filtration. Rev. Environ. Sci. Bio-Technol. 13(2): 183-201.

V. V. Tarabara and M. R. Wiesner. 2003. Computational Fluid Dynamics Modeling of the Flow in a Laboratory Membrane Filtration Cell Operated at Low Recoveries. Chem. Eng. Sci. 58(1): 239-246.

Z. Yang, J. Cheng, C. Yang, and B. Liang. 2016. CFD-based Optimization and Design of Multi-channel Inorganic Membrane Tubes. Chin. J. Chem. Eng. 24(10): 1375-1385.

S. Chellam, M. R. Wiesner, and C. Dawson. 1992. Slip at a Uniformly Porous Boundary: Effect on Fluid Flow and Mass Transfer. J. Eng. Math. 26(4): 481-492.

F. Cimolin and M. Discacciati. 2013. Navier-Stokes/Forchheimer Models for Filtration through Porous Media. Appl. Numer. Math. 72: 205-224.

N. S. Hanspal, A. N. Waghode, V. Nassehi, and R. J. Wakeman. 2006. Numerical Analysis of Coupled Stokes/Darcy Flows in Industrial Filtrations. Transp. Porous Media. 64(1): 73.

N. S. Hanspal, A. N. Waghode, V. Nassehi, and R. J. Wakeman. 2009. Development of a Predictive Mathematical Model for Coupled Stokes/Darcy Flows in Crossflow Membrane Filtration. Chem. Eng. J. 149(1): 132-142.

M. Le Bars and M. Grae Worster. 2006. Interfacial Conditions between a Pure Fluid and a Porous Medium: Implications for Binary Alloy Solidification. J. Fluid Mech. 550: 149-173.

O. Reynolds. 1883. An Experimental Investigation of the Circum- Stances which Determine Whether the Motion of Water Shall Be Direct or Sinuous, and of the Law of Resistance in Parallel Channel. Phil. Trans. R. Soc. 174: 935-982.

M. J. Rhodes. 1998. Introduction to Particle Technology. Wiley.

K. Hanjalić and B. E. Launder. 1972. A Reynolds Stress Model of Turbulence and Its Application to Thin Shear Flows. J. Fluid Mech. 52(4): 609-638.

D. C. Wilcox. 2008. Formulation of the k-ω Turbulence Model Revisited. AIAA J. 52.

S. Ahmed, M. Seraji, J. Jahedi, and M. A. Hashib. 2011. CFD Simulation of Turbulence Promoters in a Tubular Membrane Channel. Desalination. 276(1): 191-198.

M. Jafarkhani, M. K. Moraveji, R. Davarnejad, F. Moztarzadeh, and M. Mozafari. 2012. Three- dimensional Simulation of Turbulent Flow in a Membrane Tube Filled with Semi-circular Baffles. Desalination. 294: 8-16.

H. Darcy. 1856. Les Fontaines Publiques de la Ville de Dijon. Dalmont, Paris.

K. Scott. 1996. Handbook of Industrial Membranes. Elsevier Science.

K. R. Arora. 2009. Soil Mechanics and Foundation Engineering. Standard Publishing.

V. Nassehi and D. B. Das. 2007. Computational Methods in the Management of Hydro-environmental Systems. IWA Publishing.

Z. Zeng and R. Grigg. 2006. A Criterion for Non-Darcy Flow in Porous Media. Transp. Porous Media. 63(1): 57-69.

H. C. Brinkman. 1947. A Calculation of the Viscous Force Exerted by a Flowing Fluid on a Dense Swarm of Particles. Appl. Sci. Res. A. 1: 27-34.

L. Durlofsky and J. F. Brady. 1987. Analysis of the Brinkman Equation as a Model for Flow in Porous Media. Phys. Fluids. 30(11): 3329-3341.

J. A. Kolodziej. 1988. Influence of the Porosity of a Porous Medium on the Effective Viscosity in Brinkman’s Filtration Equation. Acta Mech. 75(1): 241-254.

G. Neale and W. Nader. 1974. Practical Significance of Brinkman’s Extension of Darcy’s Law: Coupled Parallel Flows within a Channel and a Bounding Porous Medium. Can. J. Chem. Eng. 52(4): 475-478.

K. Vafai and R. Thiyagaraja. 2002. Analysis of Flow and Heat Transfer at the Interface Region of a Porous Medium. Int. J. Heat Mass Transf. 30: 1391-1405.

P. Forchheimer. 1901. Wasserbewegung durch Boden. Zeitschrift des Vereines Deutscher Ingenieuer. 45: 1782-1788.

S. Whitaker. 1999. The Method of Volume Averaging. Springer.

V. A. Jambhekar. 2011. Forchheimer Porous-media Flow Models. Numerical Investigation and Comparison with Experimental Data. Master’s Thesis. Universität Stuttgart.

D. Takhanov. 2011. Forchheimer Model for Non-Darcy Flow in Porous Media and Fractures. Master’s Thesis. Imperial College London.

M. Firdaouss, J. L. Guermond, and P. Le Quere. 1997. Nonlinear Corrections to Darcy’s Law at Low Reynolds Numbers. J. Fluid Mech. 343: 331-350.

P.G. Saffman. 1971. On the Boundary Condition at the Interface of a Porous Medium. Stud. Appl. Math. 1: 93-101.

W. Jäger and A. Mikelić. 1996. On the Boundary Conditions at the Contact Interface between a Porous Medium and a Free Fluid. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 23: 403-465.

M. Discacciati, E. Miglio, and A. Quarteroni. 2002. Mathematical and Numerical Models for Coupling Surface and Groundwater Flows. Appl. Numer. Math. 43: 57-74.

W. L. Layton, F. Schieweck, and I. Yotov. 2003. Coupling Fluid Flow with Porous Media Flow. SIAM J. Numer. Anal. 40: 2195-2218.

V. Girault and B. Rivière. 2009. DG Approximation of Coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman Interface Condition. SIAM J. Numer. Anal. 47: 2052-2089.

O. Iliev and V. Laptev. 2004. On Numerical Simulation of Flow through Oil Filters. Comput. Vis. Sci. 6(2): 139-146.

A. Ochoa Tapia and S. Whitaker. 1995. Momentum Transfer at the Boundary between a Porous Medium and a Homogeneous Fluid I. Theoretical Development. Int. J. Heat Mass Transf. 38: 2635-2646.

COMSOL AB. Comsol Multiphysics version 5.3a. 2017.

R. Ingram. 2011. A Mixed Finite Element Approximation of Stokes- Brinkman and NS-Brinkman Equation for Non-Darcian Flows. SIAM J. Numer. Anal. 49: 491-520.

P. Angot. 1999. Analysis of Singular Perturbations on the Brinkman Problem for Fictitious Domain Models of Viscous Flows. Math. Methods Appl. Sci. 22: 1395-1412.

Ansys CFX. 2013. CFX-Solver: Theory.

N. Shamsuddin, D. B. Das, and V. M. Starov. 2015. Filtration of Natural Organic Matter using Ultrafiltration Membranes for Drinking Water Purposes: Circular Crossflow Compared with Stirred Dead-end Flow. Chem. Eng. J. 276: 331-339.

A. Parasyris, M. Discacciati, and D. B. Das. 2019. Mathematical and Numerical Modelling of Hybrid Water Purification Systems. Technical Report. Loughborough University.

A. Parasyris, M. Discacciati, and D. B. Das. 2019. Mathematical and Numerical Modelling of a Water Purification System. Proceedings of the Annual Conference of the UK Association for Computational Mechanics, City University of London, 2019.

D. Boffi, F. Brezzi, and M. Fortin. 2013. Mixed Finite Element Methods and Applications. Springer, Heidelberg,

P. Hansbo and A. Szepessy. 1990. A Velocity-pressure Streamline Diffusion Finite Element Method for the Incompressible Navier-Stokes Equations. Comput. Methods Appl. Mech. Eng. 84(2): 175-192.

J. Sogn. 2014. Stabilized Finite Element Methods for the Brinkman Equation on Fitted and Fictitious Domains. Master’s Thesis. University of Oslo.




How to Cite

Parasyris, A., Brady, C., Das, D. B., & Discacciati, M. (2019). Computational Modeling of Coupled Free and Porous Media Flow for Membrane-based Filtration Systems: A Review. Journal of Applied Membrane Science &Amp; Technology, 23(3).