Chitosan/Silica Composite Membrane: Adsorption of Lead(II) Ion from Aqueous Solution

Authors

  • N. Rosdi Advanced Membrane Technology Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • M. N. M. Sokri Advanced Membrane Technology Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • N. M. Rashid School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • M. S. Che Chik School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • M. S. Musa School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/amst.v23n1.141

Abstract

Chitosan membrane has the potential to separate lead(II) ions from aqueous solution. However, the kind of membrane has a drawback due to the low structural properties. Thus, this study investigates the role of silica in improving chitosan-based flat sheet membrane for removal of lead(II) ions from aqueous solution. The functional groups and structural morphologies were characterized using Fourier Transform Infrared-Attenuated Total Reflectance (FTIR-ATR) spectrometer and Scanning Electron Microscope (SEM), respectively. The membrane performance in terms of adsorption study was conducted at different pHs and initial concentration of lead(II) solution. The FTIR-ATR spectrum showed the existence of new absorption peak of chitosan/silica membrane. SEM images revealted the presence of microvoids on the cross-section of the chitosan/silica membrane whereas pure chitosan membrane possessed dense structure. The adsorption study showed that the composite membrane exhibited higher efficiency of lead(II) removal at optimum pH of 7.0 which was 89.27% as compared to 11.50% of pure chitosan membrane. The amount of lead(II) adsorbed onto the membrane was 57.60 mg/g. Therefore, it indicates the potential use of silica to improve the properties of chitosan membrane for removal of heavy metal from water solution.

References

C. F. Carolin, P. S. Kumar, A. Saravanan, G. J. Joshiba, Mu. Naushad. 2017. Efficient Techniques for the Removal of Toxic Heavy Metals from Aquatic Environment: A Review. J. Environ. Chem. Eng. 5: 2782-2799.

F. Fu, Q. Wang. 2011. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manag. 92: 407-418.

M. A. Barakat. 2011. New Trends in Removing Heavy Metals from Industrial Wastewater. Arabian. J. Chem. 4: 361-377.

S. K. Gunatilake. 2015. Methods of Removing Heavy Metals From Industrial Wastewater. J. Multidisciplinary Eng. Sci. Stud. 1: 12-18.

E. Salehi, P. Daraei, A. A. Shamsabadi. 2016. A Review on Chitosan-Based Adsorptive Membranes. Carbohydr. Polym. 152: 419-432.

E. Salehi, S. S. Madaeni, L. Rajabi, V. Vatanpour, A. A. Derakhshan, S. Zinadini, Sh. Ghorabi, H. A. Monfared. 2012. Novel Chitosan/Poly(vinyl) Alcohol Thin Adsorptive Membranes Modified With Amino Functionalized Multi-Walled Carbon Nanotubes for Cu(II) Removal from Water: Preparation, Characterization, Adsorption Kinetics and Thermodynamics. Sep. Purif. Tech. 89: 309-319.

U. Habiba, A. M. Afifi, A. Salleh, B. C. Ang. 2017. Chitosan/(Polyvinyl Alcohol)/Zeolite Electrospun Composite Nanofibrous Membrane For Adsorption of Cr6+, Fe3+ and Ni2+. J. Hazard. Mater. 322: 182-194.

M. R. Adam, S. K. Hubaidillah, M. I. M. Esham, M. H. D. Othman, M. A. Rahman, A. F. Ismail, J. Jaafar. 2019. Adsorptive Membranes for Heavy Metals Removal from Water In Membrane Separation Principles and Applications From Materials Selection To Mechanisms and Industrial Uses. Edited by A. F. Ismail, M. A. Rahman, M. H. D. Othman and T. Matsuura.

L. S. Rocha, A. Almeida, C. Nunes, B. Henriques, M. A. Coimbra, C. B. Lopes, C. M. Silva, A. C. Duarte, E. Pereira. 2016. Simple and Effective Chitosan Based Films for the Removal of Hg from Waters: Equilibrium, Kinetic and Ionic Competition. Chem. Eng. J. 300: 217-229.

S. B. Rekik, S. Gassara, J. Bouaziz, A. Deratani, S.Baklouti. 2017. Development and Characterization of Porous Membranes based on Kaolin/Chitosan Composite. Appl. Clay Sci. 143: 1-9.

Y. Rajamoorthy, K. A. Rahim, S. Munusamy. 2015. Rice Industry in Malaysia: Challenges, Policies and Implications. Procedia Econ. Finance. 31: 861-867.

R. Pode. 2016. Potential Applications of Rice Husk Ash Waste from Rice Husk Biomass Power Plant. Renew. Sustainable Energy Rev. 53: 1468-1485.

D. Battegazzore, S. Bocchini, J. Alongi, A. Frache. 2014. Rice Husk as Bio-source of Silica: Preparation and Characterization of PLA-Silica Bio-composites. RSC. Adv. 4: 54703-54712.

E. Vunain, A. K. Mishra, B. B. Mamba. 2016. Dendrimers, Mesoporous Silicas and Chitosan-Based Nanosorbents for the Removal of Heavy-metal Ions: A Review. Int. J. Biol. Macromol. 86: 570-586.

W. Sumarni, R. S. Iswari, P. Marwoto, E. F. Rahayu. 2016. Physical Characteristics of Chitosan-silica Composite of Rice Husk Ash. Mater. Sci. Eng. 107: 1-9.

T. M. Budnyak, I. V. Pylypchuk, V. A. Tertykh, E. S. Yanovska, D. Kolodynska. 2015. Synthesis and Adsorption Properties of Chitosan-silica Nanocomposite Prepared by Sol-gel Method. Nanoscale Res. Lett. 10: 1-10

M. A. Abu-Saied, R. Wycisk, M. M. Abbassy, G. A. El-Naim, F. El-Demerdash, M. E. Youssef, H. Bassuony, P. N. Pintauro. 2017. Sulfated Chitosan/PVA Adsorbent Membrane for Removal of Copper and Nickel Ions from Aqueous Solutions-Fabrication and Sorption Studies. Carbohydr. Polym. 165: 149-158.

T. M. Budnyak, V. A. tertykh, E. S. Yanovska, D. Kolodyńska, A. Bartyzel. 2015. Adsorption of V(V), Mo(VI) and Cr(VI) Oxoanions by Chitosan-silica Composite Synthesized by Mannich Reaction. Adsorption Sci. Tech. 33: 645-657.

F. W. Mahatmanti, Nuryono, Narsito. 2016. Adsorption of Ca(II), Mg(II), Zn(II) and Cd(II) On Chitosan Membrane Blended With Rice Hull Ash Silica and Polyethylene Glycol. Indones, J. Chem. 16: 45-52.

X. He, M. Du, H. Lui, T. Zhou. 2016. Removal of Direct Dyes from Aqueous Solution by Oxidized Starch Cross-linked Chitosan/Silica Hybrid Membrane. Int. J. Biol. Macromol. 82: 174-181.

S. Tasar, F. Kaya, A. Özer. 2014. Biosorption of Lead(II) Ions from Aqueous Solution by Peanut Shells: Equilibrium, Thermodynamic and Kinetic Studies. J. Environ. Chem. Eng. 2: 1018-1026.

N. Abdullah, R. J. Gohari, N. Yusof, A. F. Ismail, J. Juhana, W. J. Lau, T. Matsuura. 2016. Polysulfone/Hydrous Ferric Oxide Ultrafiltration Mixed Membrane: Preparation, Characterization and Its Adsorptive Removal of Lead(II) From Aqueous Solution. Chem. Eng. J. 289: 28-37.

A. A. Farghali, M. Bahgat. A. E. Allah, M. H. Khedr. 2013. Adsorption of Pb(II) Ions from Aqueous Solutions using Copper Oxide Nanostructures. Beni-Suef Uni. J. Basic. Appl. Sci. 2: 61-71.

S. J. Allen, G. Mckay, J. F. Porter. 2004. Adsorption Isotherm Models for Basic Dye Adsorption by Peat in Single and Binary Component Systems. J. Colloid and Interface Sci. 280: 322-333.

N. Abdullah, M. H. Tajuddin, N. Yusof, J. Jaafar, F. Aziz, N. Misdan. 2017. Removal of Lead(II) from Aqueous Solution Using Polyacrylonitrile/Zinc Oxide Activated Carbon Nanofibers. Malays. J. Anal. Sci. 21: 619-626.

U. Habiba, T. A. Siddique, J. J. L. Lee, T. C. Joo, B. C. Ang, A. M. Afifi. 2018. Adsroption Study of Methyl Orange by Chitosan/Polyvinyl Alcohol/Zeolite Electrospun Composite Nanofibrous Membrane. Carbohydr. Polym. 191: 79-85.

Downloads

Published

2018-12-05

How to Cite

Rosdi, N., Sokri, M. N. M., Rashid, N. M., Che Chik, M. S., & Musa, M. S. (2018). Chitosan/Silica Composite Membrane: Adsorption of Lead(II) Ion from Aqueous Solution. Journal of Applied Membrane Science &Amp; Technology, 23(1). https://doi.org/10.11113/amst.v23n1.141

Issue

Section

Articles