Advancement in Phosphoric Acid Doped Polybenzimidazole Membrane for High Temperature PEM Fuel Cells: A Review

Authors

  • A. A. Tahrim Section of Engineering Technology, Universiti Kuala Lumpur Malaysian Institute of Chemical & Biochemical Engineering Technology (UniKL MICET), 78000 Alor Gajah, Melaka, Malaysia
  • I. N. H. M. Amin Section of Engineering Technology, Universiti Kuala Lumpur Malaysian Institute of Chemical & Biochemical Engineering Technology (UniKL MICET), 78000 Alor Gajah, Melaka, Malaysia

DOI:

https://doi.org/10.11113/amst.v23n1.136

Abstract

High-temperature polymer electrolyte membrane fuel cell as a sustainable green technology has been developed throughout the years as it provides several benefits compared to Nafion-based fuel cells (e.g., CO tolerance, improved kinetic and enhance water management). Polybenzimidazole which one of the best membrane candidates was extensively studied due to excellent properties to be used in high-temperature application. Impregnating polybenzimidazole with phosphoric acid are most commonly practised as an electrolyte membrane in the PEMFC. In this paper, recent advancement of the existing literature regarding work revolving polybenzimidazole to improve the performance of phosphoric acid doped polybenzimidazole membrane for high-temperature polymer electrolyte membrane fuel cell are reviewed. Notable works such as using aluminium containing silicate (Al-Si), silicon carbide whisker (mSiC) and sulfonated graphene oxide in the composite PBI derivatives were observed. Proton conductivity are recorded at 0.371, 0.271 and 0.280 S/cm, respectively.

References

I. EG&G Technical Services. 2004. Fuel Cell Handbook. Fuel Cell. 7 Edition: 1-352.

S. Authayanun, K. Im-orb, and A. Arpornwichanop. 2015. A Review of the Development of High Temperature Proton Exchange Membrane Fuel Cells. Chinese J. Catal. 36: 473-483.

K.-D. Kreuer, ed. Fuel Cell: Selected Entries from the Encyclopedia of Sustainability Science and Technology, 2013.

S. M. J. Zaidi, and T. Matsuura. 2009. Polymer Membranes for Fuel Cells. Fuel Cells. Springer.

A. Hamnett. 2010. The Components of an Electrochemical Cell. Handbook of Fuel Cells.

V. Neburchilov, J. Martin, H. Wang, and J. Zhang. 2007. A Review of Polymer Electrolyte Membranes for Direct Methanol Fuel Cells. J. Power Sources. 169: 221-238.

C. Yang, P. Costamagna, S. Srinivasan, J. Benziger, and A. B. Bocarsly. 2001. Approaches and Technical Challenges to High Temperature Operation of Proton Exchange Membrane Fuel Cells. Journal of Power Sources. 103: 1-9

M. F. Mathias, R. Makharia, H. a. Gasteiger, J. J. Conley, T. J. Fuller, C. J. Gittleman, S. S. Kocha, D. P. Miller, C. K. Mittelsteadt, T. Xie, S. G. Yan, and P. T. Yu. 2005. Two Fuel Cell Cars in Every Garage? Electrochem. Soc. Interface. 14: 24-35.

S. Bose, T. Kuila, T. X. H. Nguyen, N. H. Kim, K. Lau, and J. H. Lee. 2011. Polymer Membranes for High Temperature Proton Exchange Membrane Fuel Cell: Recent Advances and Challenges. Prog. Polym. Sci. 36: 813-843.

P. Sridhar, R. Perumal, N. Rajalakshmi, M. Raja, and K. S. Dhathathreyan. 2001. Humidification Studies on Polymer Electrolyte Membrane Fuel Cell. J. Power Sources. 101: 72-78.

J. J. Baschuk, and X. Li. 2001. Carbon Monoxide Poisoning of Proton Exchange Membrane Fuel Cells. Int. J. Energy Res. 25: 695-713.

P. Krishnan, J.-S. Park, and C.-S. Kim. 2006. Performance of a Poly(2,5-benzimidazole) Membrane Based High Temperature PEM Fuel Cell in the Presence Of Carbon Monoxide. J. Power Sources. 159: 817-823.

X. Gang. 1995. Hydrogen Oxidation on Gas Diffusion Electrodes for Phosphoric Acid Fuel Cells in the Presence of Carbon Monoxide and Oxygen. J. Electrochem. Soc. 142: 2890.

Q. Li, R. He, J. O. Jensen, and N. J. Bjerrum. 2003. Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C. Chem. Mater. 15: 4896-4915.

S. G. Kandlikar, and Z. Lu. 2009. Thermal Management Issues in a PEMFC Stack - A Brief Review of Current Status. Appl. Therm. Eng. 29: 1276-1280.

J. A. Asensio, E. M. Sánchez, and P. Gómez-Romero. 2010. Proton-conducting Membranes Based on Benzimidazole Polymers for High-Temperature PEM Fuel Cells. A Chemical Quest. Chem. Soc. Rev. 39: 3210-3239.

L. Li, and Y. Wang. 2005. Sulfonated Polyethersulfone Cardo Membranes for Direct Methanol Fuel Cell. J. Memb. Sci. 246: 167-172.

A. Iulianelli, and A. Basile. 2012. Sulfonated PEEK-based Polymers in PEMFC and DMFC Applications: A Review. Int. J. Hydrogen Energy. 37: 15241-15255.

B. Liu, G. P. Robertson, D. S. Kim, M. D. Guiver, W. Hu, and Z. Jiang. 2007. Aromatic Poly(ether ketone)s with Pendant Sulfonic Acid Phenyl Groups Prepared by a Mild Sulfonation Method for Proton Exchange Membranes. Macromolecules. 40: 1934-1944.

S. Chen, Y. Yin, H. Kita, and K. I. Okamoto. 2007. Synthesis and Properties of Sulfonated Polyimides from Homologous Sulfonated Diamines Bearing bis(aminophenoxyphenyl) Sulfone. J. Polym. Sci. Part A Polym. Chem. 45: 2797-2811.

D. Zhao, J. Li, M. K. Song, B. Yi, H. Zhang, and M. Liu. 2011. A Durable Alternative for Proton-exchange Membranes: Sulfonated Poly(benzoxazole thioether sulfone)s. Adv. Energy Mater. 1: 203-211.

J. a Osaheni, and S. a Jenekhe. 1992. Synthesis and Processing of Heterocyclic Polymers as Materials . 1. New Conjugated Rigid-Rod Benzobisthiazole Polymers. Chem. Mater. 11: 1282-1290.

J. Zhang, Y. Tang, C. Song, and J. Zhang. 2007. Polybenzimidazole-membrane-based PEM Fuel Cell in the Temperature Range of 120-200 °C. J. Power Sources. 172: 163-171.

G. Hoogers. 2002. Fuel Cell Technology Handbook. CRC Press Bool.

Y.-L. Ma, J. S. Wainright, M. H. Litt, and R. F. Savinell. 2004. Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells. J. Electrochem. Soc. 151: A8.

Z. Zuo, Y. Fu, and A. Manthiram. 2012. Novel Blend Membranes Based on Acid-base Interactions for Fuel Cells. Polymers (Basel). 4: 1627-1644.

J. T. Wang, R. F. Savinell, J. Wainright, M. Litt, and H. Yu. 1996. A H2/O2 Fuel Cell Using Acid Doped Polybenzimidazole as Polymer Electrolyte. Electrochim. Acta. 41: 193-197.

B. Xing, and O. Savadogo. 1999. The Effect of Acid Doping on the Conductivity of Polybenzimidazole (PBI). J. New Mater. Electrochem. Syst. 2: 95-101.

O. Savadogo, and B. Xing. 2000. Hydrogen/oxygen Polymer Electrolyte Membrane Fuel Cell (PEMFC) based on Acid-doped polybenzimidazole (PBI). J. New Mater. Electrochem. Syst. 3: 343-347.

R. He, Q. Li, G. Xiao, and N.J. Bjerrum. 2003. Proton Conductivity of Phosphoric Acid Doped Polybenzimidazole and Its Composites with Inorganic Proton Conductors. J. Memb. Sci. 226: 169-184.

D. J. Jones, and J. Rozière. 2001. Recent Advances in the Functionalisation of Polybenzimidazole and Polyetherketone for Fuel Cell Applications. J. Memb. Sci. 185: 41-58.

H. Vogel, and C. S. Marvel. 1961. Polybenzimidazoles, New Thermally Stable Polymers. J. Polym. Sci. 50: 511-539.

Y. Iwakura, K. Uno, and Y. Imai. 1964. Polyphenylenebenzimidazoles. J. Polym. Sci. Part A-1 Polym. Chem. 2: 2605-2615.

N. Yoda, and M. Kurihara. 1971. New Polymers of Aromatic Heterocycles by Polyphosphoric Acid Solution Methods. J. Polym. Sci. 109-193.

M. Ueda, and H. Sugita. 1989. Poly(benzimidazole) Synthesis by Direct Reaction of Methoxyphthalic Acids And Tetramine. J. Polym. Sci. Part A Polym. Chem. 27: 2815-2818.

K. Fishel, G. Qian, and B.C. Benicewicz. 2016. PBI Membranes via the PPA Process. Q. Li, D. Aili, H. A. Hjuler, J. O. Jensen (Eds.). High Temp. Polym. Electrolyte Membr. Fuel Cells; Approachs, Status Perspect. Springer Science Business Media, LLC. 217-238.

J. W. Lee, D. Y. Lee, H. J. Kim, S. Y. Nam, J. J. Choi, J. Y. Kim, J. H. Jang, E. Cho, S. K. Kim, S. A. Hong, and T. H. Lim. 2010. Synthesis and Characterization of Acid-doped Polybenzimidazole Membranes by Sol-gel and Post-membrane Casting Method. J. Memb. Sci. 357: 130-133.

K. A. Perry, K. L. More, E. Andrew Payzant, R. a. Meisner, B. G. Sumpter, and B. C. Benicewicz. 2014. A Comparative Study of Phosphoric Acid-doped m -PBI Membranes. J. Polym. Sci. Part B Polym. Phys. 52: 26-35.

J. A. Asensio, S. BorroÌs, and P. GoÌmez-Romero. 2004. Polymer Electrolyte Fuel Cells Based on Phosphoric Acid-Impregnated Poly(2,5-benzimidazole) Membranes. J. Electrochem. Soc. 151: A304.

J.A. Asensio, S. Borrós, and P. Gómez-Romero. 2004. Proton-conducting Membranes based on Poly(2,5-benzimidazole) (ABPBI) and phosphoric Acid Prepared by Direct Acid Casting. J. Memb. Sci. 241: 89-93.

S. Yu, H. Zhang, L. Xiao, E.-W. Choe, and B.C. Benicewicz. 2009. Synthesis of Poly (2,2′-(1,4-phenylene) 5,5′-bibenzimidazole) ( para -PBI) and Phosphoric Acid Doped Membrane for Fuel Cells. Fuel Cells. 9: 318-324.

J. A. Mader, and B. C. Benicewicz. 2011. Synthesis and Properties of Random Copolymers of Functionalised Polybenzimidazoles for High Temperature Fuel Cells. Fuel Cells. 11: 212-221.

S.-W. Chuang, S.L.-C. Hsu, and M.-L. Yang. 2008. Preparation and Characterization of Fluorine-Containing Polybenzimidazole/imidazole Hybrid Membranes for Proton Exchange Membrane Fuel Cells. Eur. Polym. J. 44: 2202-2206.

T. H. Kim, T. W. Lim, and J. C. Lee. 2007. High-temperature Fuel Cell Membranes based on Mechanically Stable Para-ordered Polybenzimidazole Prepared by Direct Casting. J. Power Sources. 172: 172-179.

H. J. Kim, S. Y. Cho, S. J. An, Y. C. Eun, J. Y. Kim, H. K. Yoon, H. J. Kweon, and K. H. Yew. 2004. Synthesis of poly(2,5-benzimidazole) for Use as a Fuel-cell Membrane. Macromol. Rapid Commun. 25: 894-897.

A. Sannigrahi, G. Sandip, J. Lalnuntluanga, and T. Jana. 2009. How the Monomer Concentration of Polymerization Influences Various Properties of Polybenzimidazole: A Case Study with Poly(4,40-diphenylether-5,50- bibenzimidazole). J. Appl. Polym. Sci. 111: 1763-1772.

G. Qian, and B. C. Benicewicz. 2009. Synthesis and Characterization of High Molecular Weight Hexafluoroisopropylidene-Containing Polybenzimidazole for High-temperature Polymer Electrolyte Membrane Fuel Cells. J. Polym. Sci. Part A Polym. Chem. 47: 4064-4073.

S. W. Chuang, and S. L. C. Hsu. 2006. Synthesis and Properties of a New Fluorine-containing Polybenzimidazole for High-Temperature Fuel-cell Applications. J. Polym. Sci. Part A Polym. Chem. 44: 4508-4513.

J. Peron, E. Ruiz, D. J. Jones, and J. Rozière. 2008. Solution Sulfonation of a Novel Polybenzimidazole. A Proton Electrolyte for Fuel Cell Application. J. Memb. Sci. 314: 247-256.

H. Pu, L. Wang, H. Pan, and D. Wan. 2010. Synthesis and Characterization of Fluorine-containing Polybenzimidazole for Proton Conducting Membranes in Fuel Cells. J. Polym. Sci. Part A Polym. Chem. 48: 2115-2122.

Y. Devrim, H. Devrim, and I. Eroglu. 2016. Polybenzimidazole/SiO2 Hybrid Membranes for High Temperature Proton Exchange Membrane Fuel Cells. Int. J. Hydrogen Energy. 41: 10044-10052.

Y. Özdemir, N. Üregen, and Y. Devrim. 2016. Polybenzimidazole based Nanocomposite Membranes with Enhanced Proton Conductivity For High Temperature PEM Fuel Cells. Int. J. Hydrogen Energy. 1-10.

K. Seo, J. Seo, K.-H. Nam, and H. Han. 2017. Polybenzimidazole/inorganic Composite Membrane with Advanced Performance for High Temperature Polymer Electrolyte Membrane Fuel Cells. Polym. Compos. 38: 87-95.

M. Moradi, A. Moheb, M. Javanbakht, and K. Hooshyari. 2016. Experimental Study and Modeling of Proton Conductivity of Phosphoric Acid Doped PBI-Fe2TiO5 Nanocomposite Membranes for Using in High Temperature Proton Exchange Membrane Fuel Cell (HT-PEMFC). Int. J. Hydrogen Energy. 41: 2896-2910.

A. Shabanikia, M. Javanbakht, H. S. Amoli, K. Hooshyari, and M. Enhessari. 2015. Novel Nanocomposite Membranes based on Polybenzimidazole and Fe2TiO5 Nanoparticles for Proton Exchange Membrane Fuel cells. Ionics (Kiel). 21: 2227-2236.

P. Christian, F. der Kammer, M. Baalousha, and T. Hofmann. 2008. Nanoparticles: Structure, Properties, Preparation and Behaviour in Environmental Media. Ecotoxicology. 17: 326-343.

A. Shabanikia, M. Javanbakht, H. S. Amoli, K. Hooshyari, and M. Enhessari. 2015. Polybenzimidazole/strontium Cerate Nanocomposites with Enhanced Proton Conductivity for Proton Exchange Membrane Fuel Cells Operating at High Temperature. Electrochim. Acta. 154: 370-378.

S. Angioni, D. C. Villa, A. S. Cattaneo, P. Mustarelli, and E. Quartarone. 2015. Influence of Variously Functionalized SBA-15 fillers on Conductivity and Electrochemical Properties of PBI Composite Membranes for High Temperature Polymer Fuel Cells. J. Power Sources. 294: 347-353.

D. Aili, J. Zhang, M. T. Dalsgaard Jakobsen, H. Zhu, T. Yang, J. Liu, M. Forsyth, C. Pan, J.O. Jensen, L. N. Cleemann, S. P. Jiang, and Q. Li. 2016. Exceptional Durability Enhancement of PA/PBI based Polymer Electrolyte Membrane Fuel Cells for High Temperature Operation at 200 °C. J. Mater. Chem. A. 4: 4019-4024.

F. J. Pinar, P. Cañizares, M. A. Rodrigo, D. Úbeda, and J. Lobato. 2015. Long-term Testing of a High-Temperature Proton Exchange Membrane Fuel Cell Short Stack Operated with Improved Polybenzimidazole-based Composite Membranes. J. Power Sources. 274: 177-185.

G. Nawn, G. Pace, S. Lavina, K. Vezz, E. Negro, F. Bertasi, S. Polizzi, and V. Di Noto. 2015. Nanocomposite Membranes based on Polybenzimidazole and ZrO2 for High-Temperature Proton Exchange Membrane Fuel Cells. ChemSusChem. 8: 1381-1393.

M. M. Nasef, T. Fujigaya, E. Abouzari-Lotf, N. Nakashima, and Z. Yang. 2016. Enhancement of Performance of Pyridine Modified Polybenzimidazole Fuel Cell Membranes Using Zirconium Oxide Nanoclusters and Optimized Phosphoric Acid Doping Level. Int. J. Hydrogen Energy. 41: 6842-6854.

Q. Zhang, H. Liu, X. Li, R. Xu, J. Zhong, R. Chen, and X. Gu. 2016. Synthesis and Characterization of Polybenzimidazole/α-zirconium Phosphate Composites as Proton Exchange Membrane. Polym. Eng. Sci. 56: 622-628.

Y. Cai, Z. Yue, Q. Jiang, and S. Xu. 2017. Modified Silicon Carbide Whisker Reinforced Polybenzimidazole Used for High Temperature Proton Exchange Membrane. J. Energy Chem. 27(3): 820-825.

A. Zadehnazari, and M. A. Takassi. 2016. Synthesis of Modified Multi-walled Carbon Nanotube Poly(Benzimidazole-imide) Composites: Assessment of Morphological and Thermo-Mechanical Properties. Journal Composite Interfaces. 23(9): 909-924.

A. Kausar. 2015. Proton Exchange Fuel Cell Membranes of Poly(benzimidazole- amide)/sulfonated polystyrene/titania nanoparticles- Grafted-multi-walled Carbon Nanotubes. J. Plast. Film Sheeting. 31: 27-44.

N. Guerrero Moreno, D. Gervasio, A. Godínez García, and J.F. Pérez Robles. 2015. Polybenzimidazole-multiwall Carbon Nanotubes Composite Membranes for Polymer Electrolyte Membrane Fuel Cells. J. Power Sources. 300: 229-237.

V. T. Nguyen, J. T. Ziolo, Y. Yang, D. Diercks, S. M. Alfaro, H. A. Hjuler, T. Steenberg, and A. M. Herring. 2017. 12-Silicotungstic Acid Doped Phosphoric Acid Imbibed Polybenzimidazole for Enhanced Protonic Conductivity for High Temperature Fuel Cell Applications. J. Electrochem. Soc. 164: F504-F513.

J. W. Jung, S. K. Kim, and J. C. Lee. 2010. Preparation of Polybenzimidazole/lithium hydrazinium Sulfate Composite Membranes for High-temperature Fuel Cell Applications. Macromol. Chem. Phys. 211: 1322-1329.

J. Yang, C. Liu, L. Gao, J. Wang, Y. Xu, and R. He. 2015. Novel Composite Membranes of Triazole Modified Graphene Oxide and Polybenzimidazole for High Temperature Polymer Electrolyte Membrane Fuel Cell Applications. RSC Adv. 5: 101049-101054.

Y. Cai, Z. Yue, and S. Xu. 2017. A Novel Polybenzimidazole Composite Modified by Sulfonated Graphene Oxide for High Temperature Proton Exchange Membrane Fuel Cells In Anhydrous Atmosphere. J. Appl. Polym. Sci. 44986: 1-8.

N. Üregen, K. Pehlivanoğlu, Y. Özdemir, and Y. Devrim. 2016. Development of Polybenzimidazole/graphene Oxide Composite Membranes for High Temperature {PEM} Fuel Cells. Int. J. Hydrogen Energy. 42(4): 2636-2647.

B. C. Kholkhoev, E. N. Gorenskaya, S. A. Bal’zhinov, I. A. Farion, G. N. Batorova, A. V. Nomoev, P. S. Timashev, B. R. Radnaev, R. K. Chailakhyan, V. E. Fedorov, and V. F. Burdukovskii. 2016. Functional Composites based on Polybenzimidazole and Graphite Nanoplates. Russ. J. Appl. Chem. 89: 780-786.

C. Xu, X. Liu, J. Cheng, and K. Scott. 2015. A Polybenzimidazole/ionic-liquid-graphite-oxide Composite Membrane for High Temperature Polymer Electrolyte Membrane Fuel Cells. J. Power Sources. 274: 922-927.

K. Hooshyari, M. Javanbakht, and M. Adibi. 2016. Novel Composite Membranes Based on PBI and Dicationic Ionic Liquids for High Temperature Polymer Electrolyte Membrane Fuel Cells. Electrochim. Acta. 205: 142-152.

K. Hooshyari, M. Javanbakht, and M. Adibi. 2016. Novel Composite Membranes based on Dicationic Ionic Liquid and Polybenzimidazole Mixtures as Strategy for Enhancing Thermal and Electrochemical Properties of Proton Exchange Membrane Fuel Cells Applications At High Temperature. Int. J. Hydrogen Energy. 41: 10870-10883.

X. Bao, F. Zhang, and Q. Liu. 2015. Sulfonated Poly(2,5-benzimidazole) (ABPBI)/ MMT/ Ionic Liquids Composite Membranes for High Temperature PEM Applications. Int. J. Hydrogen Energy. 40: 16767-16774.

Q. Liu, Q. Sun, N. Ni, F. Luo, R. Zhang, S. Hu, X. Bao, F. Zhang, F. Zhao, and X. Li. 2016. Novel Octopus Shaped Organic - Inorganic Composite Membranes for PEMFCs. Int. J. Hydrogen Energy. 41: 16160-16166.

S. K. Kim. 2016. Polybenzimidazole and Phosphonic Acid Groups-functionalized Polyhedral Oligomeric Silsesquioxane Composite Electrolyte for High Temperature Proton Exchange Membrane. J. Nanomater. 2016: 2954147.

M. Song, X. Lu, Z. Li, G. Liu, X. Yin, and Y. Wang. 2016. Compatible Ionic Crosslinking Composite Membranes based on SPEEK and PBI for High Temperature Proton Exchange Membranes. Int. J. Hydrogen Energy. 41: 12069-12081.

F. Mack, K. Aniol, C. Ellwein, J. Kerres, and R. Zeis. 2015. Novel Phosphoric Acid-doped PBI-blends as Membranes for High-temperature PEM Fuel Cells. J. Mater. Chem. A. 3: 10864-10874.

J. Yang, Y. Xu, P. Liu, L. Gao, Q. Che, and R. He. 2015. Epoxides Cross-linked Hexafluoropropylidene Polybenzimidazole Membranes for Application as High Temperature Proton Exchange Membranes. Electrochim. Acta. 160: 281-287.

P. Ngamsantivongsa, H. L. Lin, and T. L. Yu. 2016. Crosslinked Ethyl Phosphoric Acid Grafted Polybenzimidazole and Polybenzimidazole Blend Membranes for High-temperature Proton Exchange Membrane Fuel Cells. J. Polym. Res. 23: 1-11.

T. Søndergaard, L. N. Cleemann, H. Becker, D. Aili, T. Steenberg, H. A. Hjuler, L. Seerup, Q. Li, and J. O. Jensen. 2017. Long-term Durability of HT-PEM Fuel Cells based on Thermally Cross-linked Polybenzimidazole. J. Power Sources. 342: 570-578.

D. Joseph, N. N. Krishnan, D. Henkensmeier, J. H. Jang, S. H. Choi, H.-J. Kim, J. Han, and S. W. Nam. 2017. Thermal Crosslinking of PBI/sulfonated Polysulfone based Blend Membranes. J. Mater. Chem. A. 5: 409-417.

S. Lai, J. Park, S. Cho, M. Tsai, H. Lim, and K. Chen. 2016. Mechanical Property Enhancement of Ultra-thin PBI Membrane by Electron Beam Irradiation for PEM Fuel Cell. Int. J. Hydrogen Energy. 41: 9556-9562.

J. Yang, L. Gao, J. Wang, Y. Xu, C. Liu, and R. He. 2017. Strengthening Phosphoric Acid Doped Polybenzimidazole Membranes with Siloxane Networks for Using as High Temperature Proton Exchange Membranes. Macromol. Chem. Phys. 218(10).

W. Qian, C. Shen, S. Gao, and J. Xiang. 2017. Phosphonic Acid Functionalized Siloxane Crosslinked with 3-glycidoxyproyltrimethoxysilane Grafted Polybenzimidazole High Temperature Proton Exchange Membranes. J. Appl. Polym. Sci. 134: 1-10.

H. Li, C. Shen, S. Yin, and W. Li. 2016. Preparation of Polysiloxane Phosphonic Acid Doped Polybenzimidazole High-temperature Proton-exchange Membrane. J. Appl. Polym. Sci. 133: 6-11.

H. Pan, S. Chen, Y. Zhang, M. Jin, Z. Chang, and H. Pu. 2015. Preparation and Properties of the Cross-linked Sulfonated Polyimide Containing Benzimidazole as Electrolyte Membranes in Fuel Cells. J. Memb. Sci. 476: 87-94.

Z. Yue, Y. Ben Cai, and S. Xu. 2016. Phosphoric Acid-doped Cross-linked Sulfonated Poly(imide-benzimidazole) for Proton Exchange Membrane Fuel Cell Applications. J. Memb. Sci. 501: 220-227.

X. Li, H. Ma, H. Wang, S. Zhang, Z. Jiang, B. Liu, and M. D. Guiver. 2015. Novel PA-doped Polybenzimidazole Membranes with High Doping Level, High Proton Conductivity and High Stability for HT-PEMFCs. RSC Adv. 5: 53870-53873.

X. Li, H. Ma, Y. Shen, W. Hu, Z. Jiang, B. Liu, and M. D. Guiver. 2016. Dimensionally-stable Phosphoric Acid-doped Polybenzimidazoles for High-temperature Proton Exchange Membrane Fuel Cells. J. Power Sources. 336: 391-400.

J. Ni, M. Hu, D. Liu, H. Xie, X. Xiang, and L. Wang. 2016. Synthesis and Properties of Highly Branched Polybenzimidazoles as Proton Exchange Membranes for High-Temperature Fuel Cells. J. Mater. Chem. C. 4: 4814-4821.

J. Fang, X. Lin, D. Cai, N. He, and J. Zhao. 2016. Preparation and Characterization of Novel Pyridine-containing Polybenzimidazole Membrane for High Temperature Proton Exchange Membrane Fuel Cells. J. Memb. Sci. 502: 29-36.

J. Chen, P. Chen, Y. Liu, and K. Chen. 2016. Polybenzimidazoles Containing Bulky Substituents and Ether Linkages for High-temperature Proton Exchange Membrane Fuel Cell Applications. J. Memb. Sci. 513: 270-279.

J. Chen, P. Chen, S. Lee, G. Liou, C. Chen, Y. Lan, and K. Chen. 2016. Synthesis of Soluble Polybenzimidazoles for High-temperature Proton Exchange Membrane Fuel Cell (PEMFC) Applications. React. Funtional Polym. 108: 122-129.

C. He, K. F. Han, J. H. Yu, H. Zhu, and Z. M. Wang. 2016. Novel Anti-oxidative Membranes based on Sulfide-containing Polybenzimidazole for High Temperature Proton Exchange Membrane Fuel Cells. Eur. Polym. J. 74: 168-179.

G. Sun, K. Han, J. Yu, H. Zhu, and Z. Wang. 2016. Non-planar Backbone Structure Polybenzimidazole Membranes with Excellent Solubility, High Proton Conductivity, and Better Anti-oxidative for HT-PEMFCs. RSC Adv. 6: 91068-91076.

Q. Yuan, G. H. Sun, K. F. Han, J. H. Yu, H. Zhu, and Z. M. Wang. 2016. Copolymerization of 4-(3,4-diamino-phenoxy)-benzoic Acid and 3,4-diaminobenzoic Acid Towards H3PO4-doped PBI Membranes for Proton Conductor with Better Processability. Eur. Polym. J. 85: 175-186.

F. Schönberger, G. Qian, and B. C. Benicewicz. 2017. Polybenzimidazole-based Block Copolymers: From Monomers to Membrane Electrode Assemblies for High Temperature Polymer Electrolyte Membrane Fuel Cells. J. Polym. Sci. Part A Polym. Chem. 55: 1831-1843.

P. Sun, Z. Li, F. Dong, S. Wang, X. Yin, and Y. Wang. 2017. High Temperature Proton Exchange Membranes based on Cerium Sulfophenyl Phosphate Doped Polybenzimidazole by End-group Protection and Hot-pressing Method. Int. J. Hydrogen Energy. 42: 486-495.

P. Sun, Z. Li, L. Jin, S. Wang, and X. Yin. 2017. Construction of Proton Channels and Reinforcement of Physicochemical Properties of oPBI/FeSPP/GF High Temperature PEM via Building Hydrogen Bonding Network. Int. J. Hydrogen Energy. 42: 14572-14582.

P. Sun, Z. Li, L. Jin, Y. Yang, S. Wang, X. Yin, and Y. Wang. 2017. Pre-Oxidized Acrylic Fiber Reinforced Ferric Sulfophenyl Phosphate-doped Polybenzimidazole-Based High-temperature Proton Exchange Membrane. Macromol. Mater. Eng. 201600468: 1600468.

Downloads

Published

2018-12-05

How to Cite

Tahrim, A. A., & Amin, I. N. H. M. (2018). Advancement in Phosphoric Acid Doped Polybenzimidazole Membrane for High Temperature PEM Fuel Cells: A Review. Journal of Applied Membrane Science &Amp; Technology, 23(1). https://doi.org/10.11113/amst.v23n1.136

Issue

Section

Articles