Vapor-induced Crystallization in Alcoholic Sorption using Poly(lactic acid) Films


  • Y. Moriizumi Department of Applied Chemistry, Meiji University, Kawasaki, Japan
  • K. Nagai Department of Applied Chemistry, Meiji University, Kawasaki, Japan



In this study, the sorption amount of alcohols (ethanol, 1-propanol, and 2-propanol) vapors on poly(lactic acid) (PLA) membrane was measured resulting in high increase in sorption. Sorption amount increases as the molecular volume of vapor decreases in the low-pressure region. The sorption amount of branched 2-propanol is lower than that of linear 1-propanol. In the high-pressure region, the PLA film tends to swell or plasticize as the cluster size increases, thereby increasing sorption. In addition, the alcohol vapor sorbed in the PLA film causes vapor-induced crystallization, which is in contrast to solvent- and thermally-induced crystallization, and forms an unknown crystal structure.


R. Jambeck Jenna, M. Perryman, R. Geyer, C. Wilcox, R. Siegler Theodore, A. Andrady, R. Narayan, and L. Law Kara. 2015. Marine Pollution. Plastic Waste Inputs from Land into the Ocean. Science. 347: 768-771.

H. S. Carson, S. L. Colbert, M. J. Kaylor, and K. J. McDermid. 2011. Small Plastic Debris Changes Water Movement and Heat Transfer through Beach Sediments. Mar. Pollut. Bull. 62: 1708-1713.

E. Possatto Fernanda, L. Spach Henry, P. Cattani Andre, R. Lamour Marcelo, O. Santos Lilyane, M. A. Cordeiro Nathalie, and K. Broadhurst Matt. 2015. Marine Debris in a World Heritage Listed Brazilian Estuary. Mar. Pollut. Bull. 91: 548-553.

A. Isobe, K. Uchiyama-Matsumoto, K. Uchida, and T. Tokai. 2017. Microplastics in the Southern Ocean. Mar. Pollut. Bull. 114: 623-626.

J. L. Lavers, S. Oppel, and A. L. Bond. 2016. Factors Influencing the Detection of Beach Plastic Debris. Mar. Environ. Res. 119: 245-251.

G. A. Giles and D. R. Bain. 2000. Materials and Development of Plastics Packaging for the Consumer Market. England: Sheffield Academic Press. 16-45.

S. M. Emadian, T. T. Onay, and B. Demirel. 2017. Biodegradation of Bioplastics in Natural Environments. Waste Manage. (Oxford, U. K.). 59: 526-536.

R. Iida, T. Yonezu, Y. Shinkawa, and K. Nagai. 2016. Reversible Selectivity of Water/Organic Solvent Mixtures in Poly(lactic acid) Film. J. Appl. Polym. Sci. 133: 43822/43821-43822/43810.

T. Komatsuka, A. Kusakabe, and K. Nagai. 2008. Characterization and Gas Transport Properties of Poly(Lactic Acid) Blend Membranes. Desalination. 234: 212-220.

Y. Shinkawa, Y. Hayashi, S. Sato, and K. Nagai. 2015. Permeability of Ethanol Solution Through Poly(Lactic Acid) Film. J. Appl. Polym. Sci. 132: 42031/42031-42031/42039.

Z. Javidi, S.F. Hosseini, and M. Rezaei. 2016. Development of Flexible Bactericidal Films Based on Poly(Lactic Acid) and Essential Oil and Its Effectiveness to Reduce Microbial Growth of Refrigerated Rainbow Trout. LWT--Food Sci. Technol. 72: 251-260.

T. Saiga, S. Sato, and K. Nagai. 2015. Water Vapor Solubility of Poly(Lactic Acid) Films Modified the Surface by Vacuum Ultraviolet Irradiation. J. Appl. Polym. Sci. 132: 42200/42201-42200/42208.

S. Sato, D. Gondo, T. Wada, S. Kanehashi, and K. Nagai. 2013. Effects of Various Liquid Organic Solvents on Solvent-Induced Crystallization of Amorphous Poly(Lactic Acid) Film. J. Appl. Polym. Sci. 129: 1607-1617.

S. Sato, T. Wada, R. Ido, Y. Murakoshi, S. Kanehashi, and K. Nagai. 2014. Dependence of Alcohol Vapor-induced Crystallization on Gas and Vapor Permeabilities of Poly(Lactic Acid) Films. J. Appl. Polym. Sci. 131: 40140/40141-40140/40149.

A. Hauer. 2007. Sorption Theory for Thermal Energy Storage. NATO Sci. Ser. II. 234: 393-408.

M. Yasuniwa, S. Tsubakihara, K. Iura, Y. Ono, Y. Dan, and K. Takahashi. 2006. Crystallization Behavior of Poly(L-lactic Acid). Polymer. 47: 7554-7563.

J. Puiggali, Y. Ikada, H. Tsuji, L. Cartier, T. Okihara, and B. Lotz. 2000. The Frustrated Structure of Poly(L-lactide). Polymer. 41: 8921-8930.

D. Sawai, K. Takahashi, A. Sasashige, T. Kanamoto, and S.-H. Hyon. 2003. Preparation of Oriented β-Form Poly(L-lactic acid) by Solid-State Coextrusion: Effect of Extrusion Variables. Macromolecules. 36: 3601-3605.

S. Sasaki and T. Asakura. 2003. Helix Distortion and Crystal Structure of the α-Form of Poly(L-lactide). Macromolecules. 36: 8385-8390.

J. Zhang, Y. Duan, H. Sato, H. Tsuji, I. Noda, S. Yan, and Y. Ozaki. 2005. Crystal Modifications and Thermal Behavior of Poly(L-lactic acid) Revealed by Infrared Spectroscopy. Macromolecules. 38: 8012-8021.

D. Sawai, T. Yokoyama, T. Kanamoto, M. Sungil, S.-H. Hyon, and L.P. Myasnikova. 2006. Crystal Transformation and Development of Tensile Properties Upon Drawing of Poly(L-lactic acid) by Solid-state Coextrusion: Effects of Molecular Weight. Macromol. Symp. 242: 93-103.

Y. Wang, S. S. Funari, and J. F. Mano. 2006. Influence of Semicrystalline Morphology on the Glass Transition of Poly(L-lactic acid). Macromol. Chem. Phys. 207: 1262-1271.

P. Pan, B. Zhu, W. Kai, T. Dong, and Y. Inoue. 2008. Effect of Crystallization Temperature on Crystal Modifications and Crystallization Kinetics of Poly(L-lactide). J. Appl. Polym. Sci. 107: 54-62.

P. Pan, B. Zhu, W. Kai, T. Dong, and Y. Inoue. 2008. Polymorphic Transition in Disordered Poly(L-lactide) Crystals Induced by Annealing at Elevated Temperatures. Macromolecules. 41: 4296-4304.

J. Zhang, K. Tashiro, H. Tsuji, and A. J. Domb. 2008. Disorder-to-Order Phase Transition and Multiple Melting Behavior of Poly(L-lactide) Investigated by Simultaneous Measurements of WAXD and DSC. Macromolecules. 41: 1352-1357.

K. Wasanasuk, K. Tashiro, M. Hanesaka, T. Ohhara, K. Kurihara, R. Kuroki, T. Tamada, T. Ozeki, and T. Kanamoto. 2011. Crystal Structure Analysis of Poly(l-lactic Acid) α Form on the basis of the 2-Dimensional Wide-Angle Synchrotron X-ray and Neutron Diffraction Measurements. Macromolecules. 44: 6441-6452.

K. Momma and F. Izumi. 2008. VESTA: A Three-dimensional Visualization System for Electronic and Structural Analysis. J. Appl. Cryst. 41: 653-658.

H. Sawada, Y. Takahashi, S. Miyata, S. Kanehashi, S. Sato, and K. Nagai. 2010. Gas Transport Properties and Crystalline Structures of Poly(Lactic Acid) Membranes. Trans. Mater. Res. Soc. Jpn. 35: 241-246.

K. Nagai, A. Sugawara, S. Kazama, and B. D. Freeman. 2004. Effects of Physical Aging on Solubility, Diffusivity, and Permeability of Propane and N-Butane in Poly(4-methyl-2-pentyne). J. Polym. Sci., Part B Polym. Phys. 42: 2407-2418.

B. E. Poling. 2001. The Properties of Gases and Liquids. New York: McGraw-Hill. A.6-A.49.

J. L. Lundberg. 1972. Molecular Clustering and Segregation in Sorption Systems. Pure Appl. Chem. 31: 261-281.

B. H. Zimm. 1953. Simplified Relation between Thermodynamics and Molecular Distribution Functions for a Mixture. J. Chem. Phys. 21: 934-935.

Y. Kong and J. N. Hay. 2002. The Measurement of the Crystallinity of Polymers by DSC. Polymer. 43: 3873-3878.

Y. Kong and J. N. Hay. 2003. The Enthalpy of Fusion and Degree of Crystallinity of Polymers as Measured by DSC. Eur. Polym. J. 39: 1721-1727.

E. W. Fischer, H. J. Sterzel, and G. Wegner. 1973. Investigation of the Structure of Solution Grown Crystals of Lactide Copolymers By Means of Chemicals Reactions. Kolloid-Z. Z. Polym. 251: 980-990.

C. C. McDowell, B. D. Freeman, G. W. McNeely, M. I. Haider, and A. J. Hill. 1998. Synthesis, Physical Characterization, and Acetone Sorption Kinetics in Random Copolymers of Poly(ethylene terephthalate) and Poly(ethylene 2,6-naphthalate). J. Polym. Sci., Part B Polym. Phys. 36: 2981-3000.

C. M. Hansen. 2007. Hansen Solubility Parameters A User's Handbook. Boca Raton: CRC Press. 411-457.

S. Sato, M. Ono, J. Yamauchi, S. Kanehashi, H. Ito, S. Matsumoto, Y. Iwai, H. Matsumoto, and K. Nagai. 2012. Effects of Irradiation with Vacuum Ultraviolet Xenon Excimer Lamp at 172 Nm on Water Vapor Transport through Poly(lactic acid) Membranes. Desalination. 287: 290-300.




How to Cite

Moriizumi, Y., & Nagai, K. (2018). Vapor-induced Crystallization in Alcoholic Sorption using Poly(lactic acid) Films. Journal of Applied Membrane Science &Amp; Technology, 22(2).