P84 Co-Polyimide-based Tubular Carbon Membrane: Effect of Pyrolysis Temperature

Authors

  • N. Sazali Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia bSchool of Chemical and Energy Engineering (SCEE), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pekan Pahang Darul Makmur, Malaysia
  • W. N. W. Salleh Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia School of Chemical and Energy Engineering (SCEE), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • N. Arsat Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia School of Chemical and Energy Engineering (SCEE), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Z. Harun Advanced Manufacturing and Materials Centre (AMMC), Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, Malaysia
  • K. Kadirgama Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pekan Pahang Darul Makmur, Malaysia

DOI:

https://doi.org/10.11113/amst.v23n1.121

Abstract

In this study, the effect of carbonization temperature on the performance of carbon membrane was being investigated. P84 co-polyimide-based tubular carbon membrane were fabricated through the dip-coating technique. The prepared membranes were characterized by using the thermogravimetric analysis and scanning electron microscopy. CO2, N2, and CH4 pure gas were utilized in determination of the carbon membrane’s permeation attributes. In order to enhance the membrane’s performance, carbonization process was performed in Ar environment; with the flow rate of 200 ml/min. The carbonization process was done at various temperature, namely 600 oC, 700 oC, 800 oC and 900 oC in a constant heating rate of 3 oC/min. The increased in the temperature of carbonization leads to the production of small pores size carbon membrane. Carbon membrane prepared at 800 oC showed the highest CO2/CH4 and CO2/N2 selectivity of 63.2±5.2 and 61.3±1.7, respectively.

References

N. H. Ismail, W. N. W. Salleh, N. Sazali, A. F. Ismail. 2018. Development and Characterization of Disk Supported Carbon Membrane Prepared by One-step Coating-carbonization Cycle. J. Ind. Eng. Chem. 57: 313-321.

N. Sazali, W. N. W. Salleh, A. F. Ismail, N. A. H. M. Nordin, N. H. Ismail, M-A. Mohamed, F. Aziz, N. Yusof, J. Jaafar. 2018. Incorporation of Thermally Labile Additives in Carbon Membrane Development for Superior Gas Permeation Performance. J. Nat. Gas Sci. Eng. 49: 376-384.

X. Q. Cheng, Z. X. Wang, X. Jiang, T. Li, C-H. Lau, Z. Guo, J. Ma, L. Shao. 2018. Towards Sustainable Ultrafast Molecular-separation Membranes: From Conventional Polymers to Emerging Materials. Prog. in Mater. Sci. 92: 258-283.

P. K. S. Mural, G. Madras, S. Bose. 2018. Polymeric Membranes Derived from Immiscible Blends with Hierarchical Porous Structures, Tailored Bio-interfaces and Enhanced Flux: Potential and Key Challenges. Nano-Structures & Nano-objects. 14: 149-165.

B. A. Pulido, C. Waldron, M. G. Zolotukhin, S. P. Nunes. 2017. Porous Polymeric Membranes with Thermal and Solvent Resistance. J. Membr. Sci. 539: 187-196.

M. B. Rao, S. Sircar. 1993. Nanoporous Carbon Membranes for Separation of Gas Mixtures by Selective Surface Flow. J. Membr. Sci. 85: 253-264.

Y. Zhang, J. Sunarso, S. Liu, R. Wang. 2013. Current Status and Development of Membranes for CO2/CH4 Separation: A Review. Int. J. Greenh. Gas Con. 12: 84-107.

V. C. Geiszler, W. J. Koros. 1996. Effects of Polyimide Pyrolysis Conditions on Carbon Molecular Sieve Membrane Properties. Ind. & Eng. Chem. Res. 35: 2999-3003.

J. B. S. Hamm, A. Ambrosi, J. G. Griebeler, N. R. Marcilio, I. C. Tessaro, L. D. Pollo. 2017. Recent Advances in the Development of Supported Carbon Membranes for Gas Separation. Int. J. Hyd. Energy. 42: 24830-24845.

C. Zhang, Z. Geng, J. Ma. 2013. Self-assembly Synthesis of Ordered Mesoporous Carbon Thin Membrane by a Dip-coating Technique. Micro. Meso. Mater. 170: 287-292.

W. N. W. Salleh, A. F. Ismail. 2011. Carbon Hollow Fiber Membranes Derived from PEI/PVP for Gas Separation. Sep. Purif. Techol. 80: 541-548.

N. Sazali, W. N. W. Salleh, A. F. Ismail. 2017. Carbon Tubular Membranes from Nanocrystalline Cellulose Blended with P84 Co-polyimide for H2 and he Separation. Int. J. Hyd. Energy. 42: 9952-9957.

J. N. Barsema, S. D. Klijnstra, J. H. Balster, N. F. A. van der vegt, G. H. Koops, M. Wessling. 2004. Intermediate Polymer to Carbon Gas Separation Membranes based on Matrimid PI. J. Membr. Sci. 238: 93-102.

N. Sazali, W. N. W. Salleh, N. A. H. M. Nordin, A. F. Ismail. 2015. Matrimid-based Carbon Tubular Membrane: Effect of Carbonization Environment. J. Ind. Eng. Chem. 32: 167-171.

T. A. Centeno, J. L. Vilas, A. B. Fuertes. 2004. Effects of Phenolic Resin Pyrolysis Conditions on Carbon Membrane Performance for Gas Separation. J. Membr. Sci. 228: 45-54.

E. P. Favvas, N. S. Heliopoulos, S. K. Papageorgiou, A. C. Mitropoulos, G. C. Kapantaidakis, N. K. Kanellopoulos 2015. Helium and Hydrogen Selective Carbon Hollow Fiber Membranes: The Effect of Pyrolysis Isothermal Time. Sep. Purif. Technol. 142: 176-181.

S. M. Saufi, A. F. Ismail. 2004. Fabrication of Carbon Membranes for Gas Separation––A Review. Carbon. 42: 241-259.

Downloads

Published

2018-12-05

How to Cite

Sazali, N., Salleh, W. N. W., Arsat, N., Harun, Z., & Kadirgama, K. (2018). P84 Co-Polyimide-based Tubular Carbon Membrane: Effect of Pyrolysis Temperature. Journal of Applied Membrane Science & Technology, 23(1). https://doi.org/10.11113/amst.v23n1.121

Issue

Section

Articles