Structural Modification of Pristine Graphene Network Towards Nanoporous Graphene Membrane: A Review

Authors

  • Mohd ‘Azizir-Rahim Mukri Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohd Syafiq Elias Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Madzlan Aziz Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Masaki Tanemura Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
  • Mohd Zamri Mohd Yusop Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia https://orcid.org/0000-0003-0897-2712

DOI:

https://doi.org/10.11113/amst.v22n1.120

Abstract

A single graphene layer is superior many ways preferably in electronic devices application. However, mild modification of the graphene network could open a new potential to the ultrathin graphene membrane. Moreover, recent studies demonstrated that a few simple techniques could generate and control the nanopores size on single layer graphene sheet simultaneously. This review paper will discuss all potential techniques that are capable to generate nanopores structure on the pristine single layer graphene network.

Author Biography

Mohd Zamri Mohd Yusop, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

Department of Materials

References

T. Humplik, J. Lee, S. C. O’Hern, B. A. Fellman, M. A. Baig, S. F. Hassan, M. A. Atieh, F. Rahman, T. Laoui, R. Karnik and E. N. Wang, 2011, Nanostructured materials for water desalination, Nanotechnology, 22 (29), 292001.

K. A. Mahmoud, B. Mansoor, A. Mansour and M. Khraisheh, 2015, Functional graphene nanosheets: The next generation membranes for water desalination, Desalination, 356, 208-225.

M. Ulbricht, 2006, Advanced functional polymer membranes, Polymer, 47(7), 2217-2262.

W. J. Lau, A. F. Ismail, N. Misdan and M. A. Kassim, 2012, A recent progress in thin film composite membrane: A review, Desalination, 287, 190-199.

G. M. Geise, D. R. Paul and B. D. Freeman, 2014, Fundamental water and salt transport properties of polymeric materials, Progress in Polymer Science, 39(1), 1-42.

J. Dulebohn, P. Ahmadiannamini, T. Wang, S. S. Kim, T. J. Pinnavaia and V. V. Tarabara, 2014, Polymer mesocomposites: Ultrafiltration membrane materials with enhanced permeability, selectivity and fouling resistance, Journal of Membrane Science, 453, 478-488.

H. Dong, L. Zhao, L. Zhang, H. Chen, C. Gao and W. W. Ho, 2015, High-flux reverse osmosis membranes incorporated with NaY zeolite nanoparticles for brackish water desalination, Journal of Membrane Science, 476, 373-383.

M. Safarpour, A. Khataee and V. Vatanpour, 2015, Thin film nanocomposite reverse osmosis membrane modified by reduced graphene oxide/TiO2 with improved desalination performance, Journal of Membrane Science, 489, 43-54.

J.-W. Zhang, H. Fang, J.-W. Wang, L.-Y. Hao, X. Xu and C.-S. Chen, 2014, Preparation and characterization of silicon nitride hollow fiber membranes for seawater desalination, Journal of Membrane Science, 450, 197-206.

A. Garofalo, L. Donato, E. Drioli, A. Criscuoli, M. C. Carnevale, O. Alharbi, S. A. Aljlil and C. Algieri, 2014, Supported MFI zeolite membranes by cross flow filtration for water treatment, Separation and Purification Technology, 137, 28-35.

J. Kujawa, S. Cerneaux, S. Koter and W. Kujawski, 2014, Highly efficient hydrophobic titania ceramic membranes for water desalination, ACS Applied Materials & Interfaces, 6(16), 14223-14230.

X. Li, S. Chou, R. Wang, L. Shi, W. Fang, G. Chaitra, C. Y. Tang, J. Torres, X. Hu and A. G. Fane, 2015, Nature gives the best solution for desalination: Aquaporin-based hollow fiber composite membrane with superior performance, Journal of Membrane Science, 494, 68-77.

C. Y. Tang, Y. Zhao, R. Wang, C. HeÌlix-Nielsen and A. G. Fane, 2013, Desalination by biomimetic aquaporin membranes: Review of status and prospects, Desalination, 308, 34-40.

Y. X. Shen, W. Si, M. Erbakan, K. Decker, R. D. Zorzi, P. O. Saboe, Y. J. Kang, S. Majd, P. J. Butler, T. Walz, A. Aksimentiev, J. L. Hou, M. Kumar and D. A. Weitz, 2015, Highly permeable artificial water channels that can self-assemble into two-dimensional arrays, Proceedings of the National Academy of Sciences, 112 (32), 9810-9815.

M. M. Pendergast and E. M. Hoek, 2011, A review of water treatment membrane nanotechnologies, Energy & Environmental Science, 4, 1946-1971.

F. Fornasiero, J. B. In, S. Kim, H. G. Park, Y. Wang, C. P. Grigoropoulos, A. Noy and O. Bakajin, 2010, PH-tunable ion selectivity in carbon nanotube pores, Langmuir, 26(18), 14848-14853.

F. Fornasiero, H. G. Park, J. K. Holt, M. Stadermann, C. P. Grigoropoulos, A. Noy and O. Bakajin, 2008, Ion exclusion by sub-2-nm carbon nanotube pores, Proceedings of The National Academy of Sciences, 105(45), 17250-17255.

Z. Hu, Y. Chen and J. Jiang, 2011, Zeolitic imidazolate framework-8 as a reverse osmosis membrane for water desalination: insight from molecular simulation, The Journal of Chemical Physics, 134(13), 134705.

C. H. Cho, K. Y. Oh, S. K. Kim, J. G. Yeo and P. Sharma, 2011, Pervaporative seawater desalination using NaA zeolite membrane: mechanisms of high water flux and high salt rejection, Journal of Membrane Science, 371(1-2), 226-238.

L. Lai, J. Shao, Q. Ge, Z. Wang and Y. Yan, 2012, The preparation of zeolite NaA membranes on the inner surface of hollow fiber supports, Journal of Membrane Science, 409, 318-328.

R. Peierls, 1935, Statistical error in counting experiments, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 149(868), 467-486.

L. D. Landau, 1937, Zur Theorie der phasenumwandlungen II, Phys. Z. Sowjetunion, 11(545), 26-35.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, 2004, Electric field effect in atomically thin carbon films, Science, 306(5696), 666-669.

K. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos and A. Firsov, 2005, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438(7065), 197-200.

A. K. Geim and K. S. Novoselov, 2007, The rise of graphene, Nature Materials, 6(3), 183-191.

D. Pacile, J. Meyer, C. O. Girit and A. Zettl, 2008, The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes, Applied Physics Letters, 92, 133107.

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H. Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist and V. Nicolosi, 2011, Two-dimensional nanosheets produced by liquid exfoliation of layered materials, Science, 331(6017), 568-571.

R. Ma and T. Sasaki, 2010, Nanosheets of oxides and hydroxides: Ultimate 2D charge-bearing functional crystallites, Advanced Materials, 22(45), 5082-5104.

M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh and H. Zhang, 2013, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nature Chemistry, 5(4), 263-275.

C. Ataca, H. Sahin and S. Ciraci, 2012, Stable, Single-layer mx2 transition-metal oxides and dichalcogenides in a honeycomb-like structure, The Journal of Physical Chemistry C, 116(16), 8983-8999.

M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi and M. W. Barsoum, 2012, Two-dimensional transition metal carbides, ACS Nano, 6(2), 1322-1331.

M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi and M. W. Barsoum, 2011, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Advanced Materials, 23(37), 4248-4253.

P. Vogt, P. D. Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet and G. L. Lay, 2012, Silicene: compelling experimental evidence for graphenelike two-dimensional silicon, Physical Review Letters, 108, 155501.

K. J. Koski and Y. Cui, 2013, The new skinny in two-dimensional nanomaterials, ACS Nano, 7(5), 3739-3743.

M. D. Stoller, S. Park, Y. Zhu, J. An and R. S. Ruoff, 2008, Graphene-based ultracapacitors, Nano Letters, 8(10), 3498-3502.

C. Lee, X. Wei, J. W. Kysar and J. Hone, 2008, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321(5887), 385-388.

J.-U. Lee, D. Yoon and H. Cheong, 2012, Estimation of young’s modulus of graphene by raman spectroscopy, Nano Letters, 12(9), 4444 – 4448.

P. Zhang, L. Ma, F. Fan, Z. Zeng, C. Peng, P. E. Loya, Z. Liu, Y. Gong, J. Zhang, X. Zhang, P. M. Ajayan, T. Zhu and J. Lou, 2014, Fracture toughness of graphene, Nature Communications, 5, 3782

O. Leenaerts, B. Partoens and F. M. Peeters, 2008, Graphene: A perfect nanoballoon, Applied Physics Letters, 93, 193107.

J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead and P. L. McEuen, 2008, Impermeable atomic membranes from graphene sheets, Nano Letters, 8(8), 2458-2462.

M. E. Suk and N. R. Aluru, 2010, Water transport through ultrathin graphene, The Journal of Physical Chemistry Letters, 1(10), 1590-1594.

D. Cohen-Tanugi and J. C. Grossman, 2012, Water desalination across nanoporous graphene, Nano Letters, 12(7), 3602-3608.

F. Perreault, A. F. de Faria and M. Elimelech, 2015, Environmental applications of graphene-based nanomaterials, Chemical Society Reviews, 44(16), 5861-5896

L. Huang, M. Zhang, C. Li and G. Shi, 2015, Graphene-based membranes for molecular separation, The Journal of Physical Chemistry Letters, 6(14), 2806-2815.

M. D. Fischbein and M. DrndicÌ, 2008, Electron beam nanosculpting of suspended graphene sheets, Applied Physics Letters, 93(11), 113107.

N. Inui, K. Mochiji, K. Moritani and N. Nakashima, 2010, Molecular dynamics simulations of nanopore processing in a graphene sheet by using gas cluster ion beam, Applied Physics A, 98(4), 787-794.

D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang and G. Yu, 2009, Synthesis of n-doped graphene by chemical vapor deposition and its electrical properties, Nano Letters, 9(5), 1752-1758.

S. C. O’Hern, M. S. Boutilier, J.-C. Idrobo, Y. Song, J. Kong, T. Laoui, M. Atieh and R. Karnik, 2014, Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes, Nano Letters, 14(3), 1234-1241.

S. C. O’Hern, D. Jang, S. Bose, J.-C. Idrobo, Y. Song, T. Laoui, J. Kong and R. Karnik, 2015, Nanofiltration across defect-sealed nanoporous monolayer graphene, Nano Letters, 15(5), 3254-3260

S. P. Surwade, S. N. Smirnov, I. V. Vlassiouk, R. R. Unocic, G. M. Veith, S. Dai and S. M. Mahurin, 2015, Water desalination using nanoporous single-layer graphene, Nature Nanotechnology, 10(5), 459-464.

O. Lehtinen, J. Kotakoski, A. V. Krasheninnikov, A. Tolvanen, K. Nordlund, J. Keinonen, 2010, Effects of ion bombardment on a two-dimensional target: Atomistic simulations of graphene irradiation, J. Phys. Rev. B: Condens. Matter Mater. Phys., 81(15), 153401.

C. J. Russo and J. A. Golovchenko, 2012, Atom-by-atom nucleation and growth of graphene nanopores, Proc. Natl. Acad. Sci. U. S. A., 109(16), 5953−5957.

D. Jang, J.-C. Idrobo, T. Laoui and R. Karnik, 2017, Water and solute transport governed by tunable pore size distributions in nanoporous graphene membranes, ACS Nano, 11(10), 10042–10052.

L. Xie, L. Jiao and H. Dai, 2010, Selective etching of graphene edges by hydrogen plasma, J. Am. Chem. Soc., 132(42), 14751–14753.

G. Liu, W. Jin and N. Xu, 2015, Graphene-based membranes, Chem. Soc. Rev., 44(15), 5016-5030.

D.-Y. Koh and R. P. Lively, 2015, Nanoporous graphene: Membranes at the limit, Nature Nanotechnology, 10, 385-386.

W. Yuan, J. Chen and G. Shi, 2014, Nanoporous graphene materials, Materials Today, 17(2), 77-85.

Y. Wei, J. Wu, H. Yin, X. Shi, R. Yang and M. Dresselhaus, 2012, The nature of strength enhancement and weakening by pentagon–heptagon defects in graphene, Nature Materials, 11(9), 759-763.

K. Celebi, J. Buchheim, R. M. Wyss, A. Droudian, P. Gasser, I. Shorubalko, J.-I. Kye, C. Lee and H. G. Park, 2014, Ultimate permeation across atomically thin porous graphene, Science, 344(6181), 289-292.

Y. Zhang, Z. Li, P. Kim, L. Zhang and C. Zhou, 2012, Anisotropic hydrogen etching of chemical vapor deposited graphene, ACS Nano, 6(1), 126–132.

B. Wang, Y. Zhang, H. Zhang, Z. Chen, X. Xie, Y. Sui, X. Li, G. Yu, L. Hu, Z. Jin and X. Liu, 2014, Wrinkle-dependent hydrogen etching of chemical vapor deposition-grown graphene domains, Carbon, 70, 75–80.

Downloads

Published

2018-06-04

How to Cite

Mukri, M. ‘Azizir-R., Elias, M. S., Aziz, M., Tanemura, M., & Mohd Yusop, M. Z. (2018). Structural Modification of Pristine Graphene Network Towards Nanoporous Graphene Membrane: A Review. Journal of Applied Membrane Science &Amp; Technology, 22(1). https://doi.org/10.11113/amst.v22n1.120

Issue

Section

Articles