P84 Co-polyimide/Nanocrystalline Cellulose (NCC)-based Tubular Carbon Membrane: Effect of Drying Times for Carbon Dioxide Separation at Elevated Carbonization Temperature

Authors

  • N. Sazali Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • W. N. W. Salleh Faculty of Chemical and Energy Engineering (FCEE), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • K. Kadirgama Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pekan Pahang Darul Makmur, Malaysia

DOI:

https://doi.org/10.11113/amst.v22n1.117

Abstract

In this study, the effect of drying time on the performance of tubular carbon membrane was investigated. P84 co-polyimide blends with Nanocrystalline cellulose (NCC)-based carbon membrane supported on ceramic tube was fabricated through the dip-coating technique. This study aims to investigate the effect of various drying times (12 hours, 24 hours, 3 days and 7 days) on the carbon dioxide separation properties. The gas permeation test of the resultant tubular carbon membrane was determined by using pure gas of CO2 and N2. In order to enhance the membrane performance, final carbonization temperature was executed at 800oC in Argon environment with flow rate of 200 mL/min. From the results, it was found that the best drying times was within 24 hours and such membrane showed the highest CO2/N2 selectivity (66.32±2.18).

References

A.-L. Ahmad, Y.-O. Salaudeen, Z.-A. Jawad. 2017. Synthesis of Asymmetric Polyetherimide Membrane for CO2/N2 Separation. IOP Conf. Ser.: Mater. Sci. Eng. 206: 012068.

T.-A. Centeno, J.-L. Vilas, A.-B. Fuertes. 2004. Effects of Phenolic Resin Pyrolysis Conditions on Carbon Membrane Performance for Gas Separation. J. Membr. Sci. 228: 45-54.

B.-C. Dixit, R.-B. Dixit, D.-J. Desai. 2009. Synthesis, Characterization and Material Application of Novel Polyimide. Int. J. Polym. Mater. Polym. Biomaterials. 58: 229-242.

A.-B. Fuertes, 2000. Adsorption-Selective Carbon Membrane for Gas Separation. J. Membr. Sci. 177: 9-16.

X. He, M.-B. Hägg. 2012. Structural, Kinetic and Performance Characterization of Hollow Fiber Carbon Membranes. J. Membr. Sci. 390-391: 23-31.

R.-A. Ilyas, S.-M. Sapuan, M.-R. Ishak. 2018. Isolation and Characterization of Nanocrystalline Cellulose From Sugar Palm Fibres (arenga pinnata). Carbohydr. Polym. 181: 1038-1051.

R. Khalilpour, K. Mumford, H. Zhai, A. Abbas, G. Stevens, E.-S. Rubin. 2015. Membrane-based Carbon Capture from Flue Gas: A Review. J. Clean Prod. 103: 286-300.

R.-J. Lee, Z.-A. Jawad, A.-L. Ahmad, J.-Q. Ngo, H.-B. Chua. 2017. Improvement of CO2/N2 Separation Performance by Polymer Matrix Cellulose Acetate Butyrate. IOP Conf. Ser. Mater. Sci. Eng. 206: 012072.

H. Lin, M. Yavari. 2015. Upper Bound of Polymeric Membranes for Mixed-gas CO2/CH4 Separations. J. Membr. Sci. 475: 101-109.

J. Liu, X. Hou, H.-B. Park, H. Lin. 2016. High-performance Polymers for Membrane CO2/N2 Separation. Chemistry–A European Journal. 22: 15980-15990.

D.-W. Mangindaan, N.-M. Woon, G.-M. Shi, T.-S. Chung. 2015. P84 Polyimide Membranes Modified by a Tripodal Amine for Enhanced Pervaporation Dehydration of Acetone. Chem. Eng. Sci. 122: 14-23.

S.-A. Ogundare, V. Moodley, W.-E. Van Zyl. 2017. Nanocrystalline Cellulose Isolated from Discarded Cigarette Filters. Carbohydr. Polym. 175: 273-281.

K. Rahbar Shamskar, H. Heidari, A. Rashidi. 2016. Preparation and Evaluation of Nanocrystalline Cellulose Aerogels from Raw Cotton and Cotton Stalk. Ind. Crops. Prod. 93: 203-211.

W.-N.-W. Salleh, A.-F. Ismail. 2012. Effects of Carbonization Heating Rate on CO2 Separation of Derived Carbon Membranes. Sep. Purif. Technol. 88: 174-183.

N. Sazali, W.-N.-W. Salleh, A.-F. Ismail, N.-A.-H.-M. Nordin, N.-H. Ismail, M.-A. Mohamed, F. Aziz, N. Yusof, J. Jaafar. 2018. Incorporation of Thermally Labile Additives in Carbon Membrane Development for Superior Gas Permeation Performance. J. Nat. Gas Sci. Eng. 49: 376-384.

K.-M. Steel, W.-J. Koros. 2005. An investigation of the Effects of Pyrolysis Parameters on Gas Separation Properties of Carbon Materials. Carbon. 43: 1843-1856.

C. Wang, L. Ling, Y. Huang, Y. Yao, Q. Song. 2015. Decoration of Porous Ceramic Substrate with Pencil for Enhanced Gas Separation Performance of Carbon Membrane. Carbon. 84: 151-159.

M.-Y. Zhang, H.-Q. Niu, S.-L. Qi, G.-F. Tian, X.-D. Wang, D.-Z. Wu. 2014. Structure Evolutions Involved in the Carbonization of Polyimide Fibers with Different Chemical Constitution. Mater. Today Commun. 1: 1-8.

N. Sazali, W.-N.-W. Salleh, A.-F. Ismail, N.-H. Ismail, N.Yusof, F.Aziz, J. Jaafar.N.-A.-H.-M. Nordin. 2018. Controlled Dip-coating Times for Improving CO2 Selective of PI/NCC based Supported Carbon Membrane. J. Membr. Sci. Tech. 8:1.

N. Sazali, W.-N.-W. Salleh, A.-F. Ismail, N.-H. Ismail, F. Aziz, N. Yusof, H. Hasbullah. 2018. Effect of Stabilization Temperature During Pyrolysis Process of P84 co-polyimide-based Tubular Carbon Membrane for H2/N2 and He/N2 Separations. IOP Conf. Ser.: Mater. Sci. Eng. 342: 012027

A. Kaboorani, B. Riedl, P. Blanchet, M. Fellin, O. Hosseinaei, S. Wang. 2012. Nanocrystalline Cellulose (NCC): A Renewable Nano-Material for Polyvinyl Acetate (PVA) Adhesive. European Poly. J. 48: 1829-1837.

M.-A. Mohamed, W.-N.-W. Salleh, J Jaafar, A.-F Ismail, M.-A Mutalib, N.-A.-A. Sani, S.-E.-A.Asri, C.-S Ong. 2016. Physicochemical Characteristic of Regenerated Cellulose/N-doped TiO2 Nanocomposite Membrane Fabricated from Recycled Newspaper with Photocatalytic Activity under UV and Visible Light Irradiation. Chem. Eng. J. 284: 202-215.

Downloads

Published

2018-06-04

How to Cite

Sazali, N., Salleh, W. N. W., & Kadirgama, K. (2018). P84 Co-polyimide/Nanocrystalline Cellulose (NCC)-based Tubular Carbon Membrane: Effect of Drying Times for Carbon Dioxide Separation at Elevated Carbonization Temperature. Journal of Applied Membrane Science & Technology, 22(1). https://doi.org/10.11113/amst.v22n1.117

Issue

Section

Articles