Precursor Selection for Carbon Membrane Fabrication: A Review

Authors

  • N. Sazali Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia Advanced Manufacturing and Materials Centre (AMMC), Faculty of Mechanical and Manufacturing Engineering, University Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, Malaysia Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pekan Pahang Darul Makmur
  • W. N. W. Salleh Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia Faculty of Chemical and Energy Engineering (FCEE), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • M. Nur Izwanne Barrer Centre, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
  • Z. Harun Advanced Manufacturing and Materials Centre (AMMC), Faculty of Mechanical and Manufacturing Engineering, University Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, Malaysia
  • K. Kadirgama Barrer Centre, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom

DOI:

https://doi.org/10.11113/amst.v22n2.122

Abstract

The rapid expansion of gas separation technology since it was first introduced is promoted by the beneficial selective permeability capability of the polymeric membranes. Up to the currently available information, a large number of studies have reported polymeric membranes permeability and selectivity performances for a different type of gasses. However, trends showed that separation of gases using as per in synthesized polymers had reached a bottlenecks performance limits. Due to this reason, membranes in the form of asymmetric and composite structures is seen as an interesting option of membrane modification to improve the performance and economic value of the membranes alongside with an introduction of new processes to the field. An introduction of new polymers during membrane fabrication leads to a formation of its unique structure depending on the polymers. Thus, structured studies are needed to determine the kinetic behavior of the new addition to membrane structures. This review examines the ongoing progress made in understanding the effects of the different polymers additives to the structural modification and the gas separation performances of the carbon membranes. A reduction of defects consisted of pore holes, and cracks on carbon membranes could be minimized with the right selection of polymer precursor.

References

J-K. Adewole, A-L. Ahmad, S. Ismail, C-P. Leo. 2013. Current Challenges in Membrane Separation of CO2 from Natural Gas: A Review. Int. J. Greenh. Gas Con. 17: 46-65.

Z. Dai, L. Ansaloni, L. Deng. 2016. Recent Advances in Multi-Layer Composite Polymeric Membranes for CO2 Separation: A Review. Green Energy & Environment. 1 (2): 102-128.

G. George, N. Bhoria, S. Alhallaq, A. Abdala, V. Mittal. 2016. Polymer Membranes for Acid Gas Removal from Natural Gas. Sep. Purif. Technol. 158: 333-356.

C-A. Scholes, C-P. Ribeiro, S-E. Kentish, B-D. Freeman. 2014. Thermal Rearranged Poly (benzoxazole)/ polyimide Blended Membranes for CO2 Separation. Sep. Purif. Technol. 124: 134-140.

L-W. Mckeen. 2015. Polyimides. 213-245.

D. Ayala, A-E. Lozano, J. De Abajo, C. GarcıÌa-Perez, J-G. De La Campa, K-V. Peinemann, B-D. Freeman, R. Prabhakar, R. 2003. Gas Separation Properties of Aromatic Polyimides. J. Membr. Sci. 215: 61-73.

M-G. García, J. Marchese,N-A. Ochoa. 2010. Aliphatic–aromatic Polyimide Blends for H2 Separation. Int. J. Hyd. Energy. 35: 8983-8992.

S-S. Hosseini, M-R. Omidkhah, A. Zarringhalam Moghaddam, V. Pirouzfar, W-B. Krantz, N-R. Tan. 2014. Enhancing the Properties and Gas Separation Performance of PBI–polyimides Blend Carbon Molecular Sieve Membranes via Optimization of the Pyrolysis Process. Sep. Purif. Technol. 122: 278-289.

L. Shao, T-S. Chung, G. Wensley, S-H. Goh, K-P. Pramoda. 2004. Casting Solvent Effects on Morphologies, Gas Transport Properties of a Novel 6FDA/PMDA–TMMDA Copolyimide Membrane and Its Derived Carbon Membranes. J. Membr. Sci. 244: 77-87.

J. Chen, J. Zhang, T. Zhu, Z. Hua, Q. Chen, X. Yu. 2001. Blends of Thermoplastic Polyurethane and Polyether–polyimide: Preparation and Properties. Polymer. 42: 1493-1500.

Y- Shen, A-C. Lua. 2012. Structural and Transport Properties of BTDA-TDI/MDI Co-polyimide (P84)–silica Nanocomposite Membranes for Gas Separation. Chem. Eng. J. 188: 199-209.

X. Qiao, T-S. chung, K-P. Pramoda. 2005. Fabrication and Characterization of BTDA-TDI/MDI (P84) Co-polyimide Membranes for the Pervaporation Dehydration of Isopropanol. J. Membr. Sci. 264: 176-189.

E-P. Favvas, G-C. Kapantaidakis, J-W. Nolan, A-C. Mitropoulos, N-K. Kanellopoulos. 2007. Preparation, Characterization and Gas Permeation Properties of Carbon Hollow Fiber Membranes based on Matrimid® 5218 Precursor. J. Mater. Process. Technol. 186: 102-110.

K-M. Steel, W-J. Koros. 2005. An Investigation of the Effects of Pyrolysis Parameters on Gas Separation Properties of Carbon Materials. Carbon. 43: 1843-1856.

N. Bhuwania, Y. Labreche,C-S-K. Achoundong, J. Baltazar, S-K. Burgess, S. Karwa, L. Xu, C-L. Henderson, P-J. Williams, W-J. Koros. 2014. Engineering Substructure Morphology of Asymmetric Carbon Molecular Sieve Hollow Fiber Membranes. Carbon. 76: 417-434.

S. Fu, E-S. Sanders, S-S. Kulkarni, G-B. Wenz, W-J. Koros. 2015. Temperature Dependence of Gas Transport and Sorption in Carbon Molecular Sieve Membranes Derived from Four 6FDA based Polyimides: Entropic Selectivity Evaluation. Carbon. 95: 995-1006.

S. Fu, G-B. Wenz, E-S. Sanders, S-S. Kulkarni, W. Qiu, C. Ma, W-J. Koros. 2016. Effects of Pyrolysis Conditions on Gas Separation Properties of 6FDA/DETDA: DABA (3:2) Derived Carbon Molecular Sieve Membranes. J. Membr. Sci. 520: 699-711.

M. Rungta, G-B. Wenz, C. Zhang, L. Xu, W. Qiu, J-S. Adams, W-J. Koros. 2017. Carbon Molecular Sieve Structure Development and Membrane Performance Relationships. Carbon. 115: 237-248.

W. Qiu, K. Zhang, F-S. Li, K. Zhang, W-J. Koros. 2014. Gas Separation Performance of Carbon Molecular Sieve Membranes based on 6FDA-MPDA/DABA (3:2) Polyimide. Chemsuschem. 7: 1186-1194.

X. Ning, W-J. Koros. 2014. Carbon Molecular Sieve Membranes Derived from Matrimid® Polyimide for Nitrogen/methane Separation. Carbon. 66: 511-522.

M. Yoshimune, K. Haraya. 2013. CO2/CH4 Mixed Gas Separation Using Carbon Hollow Fiber Membranes. Energy Procedia. 37: 1109-1116.

K. Briceño, D. Montané, D. Garcia-Valls, R. Iulianelli, A. Basile. 2012. Fabrication Variables Affecting the Structure and Properties of Supported Carbon Molecular Sieve Membranes for Hydrogen Separation. J. Membr. Sci. 415-416: 288-297.

M. Teixeira, M-C. Campo, D-A. Tanaka, M-A. Tanco, C. Magen, A. Mendes. 2011. Composite Phenolic Resin-based Carbon Molecular Sieve Membranes for Gas Separation. Carbon. 49: 4348-4358.

Y. Xiao, M-L. cheng, T-S. Chung, M. Toriida, S. Tamai, H. Chen, Y-C-J. Jean. 2010. Asymmetric Structure and Enhanced Gas Separation Performance Induced by In Situ Growth of Silver Nanoparticles in Carbon Membranes. Carbon. 48: 408-416.

M-Y. Wey, H-H. Tseng, C-K. Chiang. 2014. Improving the Mechanical Strength and Gas Separation Performance of cms Membranes by Simply Sintering Treatment of α- Al2O3 Support. J. Membr. Sci. 453: 603-613.

C. Wang, X. Hu, J. Yu, L. Wei, Y. Huang. 2014. Intermediate Gel Coating on Macroporous Al2O3 Substrate for Fabrication of Thin Carbon Membranes. Ceram. Int. 40: 10367-10373.

M. Teixeira, S-C. Rodrigues, M. Campo, D-A. Pacheco Tanaka, M-A. llosa Tanco, L-M. Madeira, J-M. Sousa, A. Mendes. 2014. Boehmite-phenolic Resin Carbon Molecular Sieve Membranes—Permeation and Adsorption Studies. Chem. Eng. Res. Des. 92: 2668-2680.

S-C. Rodrigues, R. Whitley, A. Mendes. 2014. Preparation and Characterization of Carbon Molecular Sieve Membranes Based on Resorcinol–Formaldehyde Resin. J. Membr. Sci. 459: 207-216.

O. Salinas, X. Ma, E. Litwiller, I. Pinnau. 2016. High-performance Carbon Molecular Sieve Membranes for Ethylene/Ethane Separation Derived from an Intrinsically Microporous Polyimide. J. Membr. Sci. 500: 115-123.

V-C. Geiszler, W-J. Koros. 1996. Effects of Polyimide Pyrolysis Conditions on Carbon Molecular Sieve Membrane Properties. Ind. Eng. Chem. Research. 35: 2999-3003.

S-J. Kim, Y-I. Park, S-E. Nam, H. Park, P-S. Lee. 2016. Separations of f-gases from Nitrogen through Thin Carbon Membranes. Sep. Purif. Technol. 158:108-114.

A-B. Fuertes, D-M. Nevskaia, T-A. Centeno. 1999. Carbon Composite Membranes from Matrimid® and Kapton® Polyimides for Gas Separation. Microporous Mesoporous Mater. 33: 115-125.

P-S. Tin, T-S. Chung, Y. Liu, R. Wang. 2004. Separation of CO2/CH4 through Carbon Molecular Sieve Membranes Derived from P84 Polyimide. Carbon. 42: 3123-3131.

E-P. Favvas, F-K. Katsaros, S-K. Papageorgiou, A-A. Sapalidis,A-C. Mitropoulos. 2017. A Review of the Latest Development of Polyimide Based Membranes for CO2 Separations. React. Funct. Polym. 120: 104-130.

S-S. Hosseini, T-S. Chung. 2009. Carbon Membranes from Blends of Pbi and Polyimides for N2/CH4 and CO2/CH4 Separation and Hydrogen Purification. J. Membr. Sci. 328: 174-185.

B-T. Low, T-S. Chung. 2011. Carbon Molecular Sieve Membranes Derived from Pseudo-interpenetrating Polymer Networks for Gas Separation and Carbon Capture. Carbon. 49: 2104-2112.

S-S. Hosseini, M-M. Teoh, T-S. Chung. 2008. Hydrogen Separation and Purification in Membranes of Miscible Polymer Blends with Interpenetration Networks. Polymer. 49: 1594-1603.

H. Hatori, T. Kobayashi, Y. Hanzawa, Y. Yamada, Y. Iimura, T. Kimura, M. Shiraishi. 2001. Mesoporous Carbon Membranes from Polyimide Blended with Poly(ethylene glycol). J. Appl. Polym. Sci. 79: 836-841.

V. Pirouzfar, S-S. Hosseini, M-R. Omidkhah, A-Z. Moghaddam. 2014. Modeling and Optimization of Gas Transport Characteristics of Carbon Molecular Sieve Membranes through Statistical Analysis. Polym. Eng. Sci. 54: 147-157.

Y-K. Kim, H-B. Park, Y-M. Lee. 2005. Gas Separation Properties of Carbon Molecular Sieve Membranes Derived from Polyimide/ polyvinylpyrrolidone Blends: Effect of the Molecular Weight of Polyvinylpyrrolidone. J. Membr. Sci. 251: 159-167.

H-J. Lee, H. Suda, K. Haraya, S-H. Moon. 2007. Gas Permeation Properties of Carbon Molecular Sieving Membranes Derived from the Polymer Blend of Polyphenylene Oxide (PPO)/ polyvinylpyrrolidone (PVP). J. Membr. Sci. 296: 139-146.

A-K. Itta, H-H. Tseng, M-Y. Wey. 2011. Fabrication and characterization of PPO/PVP Blend Carbon Molecular Sieve Membranes for H2/N2 and H2/CH4 Separation. J. Membr. Sci. 372: 387-395.

X. Zhang, H. Hu, Y. Zhu, S. Zhu. 2007. Carbon Molecular Sieve Membranes Derived from Phenol Formaldehyde Novolac Resin Blended with Poly (ethylene glycol). J. Membr. Sci. 289: 86-91.

H-J. Lee, H. Suda, K. Haraya. 2007. Preparation of Carbon Membranes Derived from Polymer Blends in the Presence of a Thermally Labile Polymer. Sep. Sci. Technol. 42: 59-71.

Y-K. Kim, H-B. Park, Y-M. Lee. 2004. Carbon Molecular Sieve Membranes Derived from Thermally Labile Polymer Containing Blend Polymers and Their Gas Separation Properties. J. Membr. Sci. 243: 9-17.

S. Mohsenpour, A. Safekordi, M. Tavakolmoghadam, F. Rekabdar, M. Hemmati. 2016. Comparison of the Membrane Morphology Based on the Phase Diagram Using PVP as an Organic Additive and TiO2 as an Inorganic Additive. Polymer. 97: 559-568.

S. Ummartyotin, C. Pechyen. 2016. Microcrystalline-cellulose and Polypropylene Based Composite: A Simple, Selective and Effective Material for Microwavable Packaging. Carbohydr. Polym. 142: 133-140.

Y-R. Rhim, D. Zhang, D-H. Fairbrother, K-A. Wepasnick, K-J. Livi, R-J. Bodnar, D-C. Nagle. 2010. Changes in Electrical and Microstructural Properties of Microcrystalline Cellulose as Function of Carbonization Temperature. Carbon. 48: 1012-1024.

N. Sazali, W-N-W. Salleh, A-F. Ismail. 2017. Carbon Tubular Membranes from Nanocrystalline Cellulose Blended with P84 Co-polyimide for H2 and he Separation. Int. J. Hyd. Energy. 42: 9952-9957.

M-A. Mohamed, W-N-W. Salleh, J. Jaafar, A-F. Ismail. M. Abd Mutalib, A-B. Mohamad, M-F. Zain, N-A. Awang, Z-A. Mohd Hir. 2017. Physicochemical Characterization of Cellulose Nanocrystal and Nanoporous Self-assembled Cnc Membrane Derived from Ceiba Pentandra. Carbohydr. Polym. 157: 1892-1902.

M-A. Mohamed, W-N-W. Salleh, J. Jaafar, S-E-A-M. Asri, A-F. Ismail. 2015. Physicochemical Properties of “green†Nanocrystalline Cellulose Isolated from Recycled Newspaper. Rsc Adv. 5: 29842-29849.

Y. Wu, X. Li, X. Shi, Y. Zhan, H. Tu, Y. Du, H. Deng, L. Jiang. 2017. Production of Thick Uniform-coating Films Containing Rectorite on Nanofibers through the Use of an Automated Coating Machine. Colloids Surf. B. 149: 271-279.

B-S. Lalia, E. guillen,H-A. Arafat, R. Hashaikeh. 2014. Nanocrystalline Cellulose Reinforced Pvdf-hfp Membranes for Membrane Distillation Application. Desalination. 332: 134-141.

Y. Mo, R. Guo, J. Liu, Y. Lan, Y. Zhang, W. Xue, Y. Zhang. 2015. Preparation and Properties of Plga Nanofiber Membranes Reinforced with Cellulose Nanocrystals. Colloids Surf., B. 132: 177-184.

P. Satyamurthy, N. Vigneshwaran. 2013. A Novel Process for Synthesis of Spherical Nanocellulose by Controlled Hydrolysis of Microcrystalline Cellulose Using Anaerobic Microbial Consortium. Enzyme Microb. Technol. 52: 20-5.

P-S. Rao, M-Y. Wey, H-H. Tseng, I-A. Kumar, T-H. Weng. 2008. A Comparison of Carbon/Nanotube Molecular Sieve Membranes with Polymer Blend Carbon Molecular Sieve Membranes for the Gas Permeation Application. Microporous Mesoporous Mater. 113: 499-510.

L. Li, C. Song, H. Jiang, J. Qiu, T. Wang. 2014. Preparation and Gas Separation Performance of Supported Carbon Membranes with Ordered Mesoporous Carbon Interlayer. J. Membr. Sci. 450: 469-477.

L. Li, T. Wang, Q. Liu, Y. Cao, J. Qiu. 2012. A High CO2 Permselective Mesoporous Silica/Carbon Composite Membrane for CO2 Separation. Carbon. 50: 5186-5195.

M. Teixeira, M-C. Campo, D-A. Tanaka, M-A. Tanco, C. Magen, A. Mendes. 2012. Carbon–Al2O3–Ag Composite Molecular Sieve Membranes for Gas Separation. Chem. Eng. Res. Des. 90: 2338-2345.

Y-G. Zhang, M-C. Lu. 2010. Effect of Impregnation on the Pore Structure of a Tubular Carbon Membrane. New Carbon Mater. 25: 475-478.

C. Song, T. Wang, H. Jiang, X. Wang, Y. Cao, J. Qiu. 2010. Gas Separation Performance of c/cms Membranes Derived from Poly(furfuryl alcohol) (PFA) with Different Chemical Structure. J. Membr. Sci. 361: 22-27.

Downloads

Published

2018-11-21

How to Cite

Sazali, N., Salleh, W. N. W., Nur Izwanne, M., Harun, Z., & Kadirgama, K. (2018). Precursor Selection for Carbon Membrane Fabrication: A Review. Journal of Applied Membrane Science & Technology, 22(2). https://doi.org/10.11113/amst.v22n2.122

Issue

Section

Articles