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ABSTRACT  
 

Fuel cells such as polymer electrolyte membrane fuel cells are playing crucial role in the transition 

towards sustainable energy systems. Ion conducting membranes (ICMs) are playing critical 

chemical and mechanical roles in such fuel cells which directly affecting the efficiency, durability 

and overall device performance. Recent progress in machine learning (ML) is introducing 

powerful tools to aid in the discovery, design, and optimization of membrane materials that is 

likely to lead to quicker and more cost-effective materials development cycles. This article 

discusses the significant potential of applying ML research and development of new generation 

of ICMs for polymer electrolyte membrane fuel cells. The scope is overviewing types of polymer 

electrolyte membrane fuel cells and their operation environments with different ICMs in addition 

to present status and technical challenges for development new ICMs.  Moreover, the key ML 

algorithms for ion exchange membranes (IEMs) development techniques together with available 

ML frameworks and their potential uses in optimization of membranes structural properties, 

performance prediction, and new materials discovery are discussed. The challenges and the future 

directional approaches to accelerate the development of robust ICMs using ML driven research 

that ultimately improving the sustainability and efficiency of fuel cell technologies are elaborated. 
 

Keywords: Machine learning, ion conduction membranes, ML frameworks, fuel cells, deep 

learning 

 

 

1.0 INTRODUCTION 

 

The transition towards cleaner energy 

sources has underscored the importance 

of fuel cell technologies as a typical 

example for hydrogen utilization. Fuel 

cell technology is regarded as an 

efficient method for converting 

chemical energy into electrical energy, 

offering high conversion efficiency and 

reduced environmental impact. 

Especially, polymer electrolyte 

membrane fuel cells, which are suitable 

for wide range of applications including 

portable devices, mobile powertrains 

and stationary power generator [1, 2]. 

Polymer electrolyte membrane fuel 

cells provide significant advantages over 

other renewable energy sources due to 

their high efficiency, compact design, 

and ability to deliver continuous power 

output. Unlike solar and wind energy, 

which are dependent on environmental 

conditions, fuel cells use controlled 

electrochemical reactions to produce 

electricity, ensuring a reliable energy 

supply for applications requiring 

consistent power, such as portable 

electronics, automotive powertrains, and 

stationary power generation and backup 



20  Mohamed Mahmoud Nasef & Mohamed Hadi Habaebi 

systems. Their low operating 

temperatures enable rapid start-up and 

shut-down, making them highly suitable 

for dynamic applications where 

flexibility and quick responsiveness are 

crucial [3]. 

PEMFCs also offer high power 

density, allowing for lightweight and 

compact system designs, which is ideal 

for space-constrained applications like 

portable power generation and transport 

systems. They produce only water as a 

byproduct, minimizing their 

environmental footprint and supporting 

efforts to reduce greenhouse gas 

emissions. Moreover, PEMFCs can 

integrate with other renewable sources 

to enhance energy storage capabilities, 

converting excess energy into chemical 

energy for later use. Compared to 

batteries, PEMFCs tend to have longer 

lifespans and less performance 

degradation over time, making them a 

durable and scalable option in the push 

toward sustainable and resilient energy 

solutions [4]. 
 

1.1  Polymer Electrolyte Membrane 

Fuel Cells 
 

Polymer electrolyte membrane fuel cells 

are devices that convert gaseous or 

liquid fuels into electrical energy using 

oxygen as the oxidant, facilitated by a 

catalyst, without relying on combustion 

processes. When hydrogen serves as the 

fuel, the system is classified as a proton 

exchange membrane fuel cell (PEMFC). 

For liquid fuels such as methanol, 

ethanol, or formic acid, the fuel cells are 

designated as direct methanol fuel cells 

(DMFCs), direct alcohol fuel cells 

(DAFCs), or direct formic acid fuel cells 

(DFAFCs), respectively. Liquid fuels 

simplify the design and operation of fuel 

cells, enabling their use in portable 

applications with higher energy 

densities. Particularly, DAFCs hold 

several key advantages over the more 

established methanol fuel cell, including 

a comparably high real open-circuit 

voltage, reduced fuel crossover through 

a Nafion membrane and a benign 

toxicological fuel profile. Figure 1 

illustrates a schematic of polymer 

electrolyte membrane fuel cells using 

various fuels and their operational 

principles. While air can replace pure 

oxygen as an oxidant, adjustments in the 

fuel-to-oxidant ratio are necessary to 

counter potential declines in 

performance.  

 

 
 

Figure 1 Schematic diagram of various polymer electrolyte membranes fuel cells
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Ion conducting membrane (ICM) is a 

crucial component as it plays chemical 

function represented by ion transfer and 

mechanical function preventing fuel 

crossover. Proton exchange membranes 

(PEMs) conduct protons, whereas anion 

exchange membranes (AEMs) transport 

hydroxide ions and reduce fuel 

crossover, facilitating the use of non-

precious metal catalysts in AEMFCs. 

To put ICM into function, it is 

sandwiched between an anode and 

cathode forming membrane/electrode 

assembly which is so critical for 

operation. Nafion, perfluorinated 

sulfonic acid (PFSA) membranes, is 

widespread used as proton conducting 

membrane where FumaTech and 

Aemion are used as hydroxide 

conducting membranes [5]. However, 

the high cost of Nafion and lack of 

long-term stability of FumaTech and 

Aemion  (>1000 h) drive the 

exploration of alternative membranes 

[6]. Numerous research institutes are 

exploring novel materials with the goal 

of creating high ionically conductive, 

chemically stable, and cost-effective 

membranes. These efforts include 

innovative approaches such as blending 

monomers with films, incorporating 

crosslinkers, or using comonomers with 

films and formation of nanocomposite 

membranes [7].   

 

1.2 Current Status and Technical 

Challenges for New Membranes 

 

Majority of newly investigated 

advanced materials like porous 

frameworks, cross-linked structures, 

and inorganic-organic composites are 

being explored to overcome the 

limitations of conventional polymeric 

membranes and enhance their overall 

performance in fuel cell applications 

[8]. However, these materials face 

several challenges that affect their 

performance and commercialization. 

These include limited thermal stability, 

strong dependence on hydration for 

maintaining proton conductivity, and 

issues with fuel crossover, which 

reduce efficiency. Additionally, 

chemical degradation from exposure to 

highly oxidated environments, 

mechanical durability issues due to 

swelling and shrinking, and the high 

cost of materials like PFSA membranes 

pose significant obstacles [9]. While 

alternative materials aim to reduce 

costs, they often struggle to match the 

performance and stability of 

conventional options. Balancing ionic 

conductivity with durability and 

managing gas or liquid fuel 

permeability are critical for improving 

membrane effectiveness in various fuel 

cell applications. The required 

characteristics that should be enhanced 

in new generation of ICMs for polymer 

electrolyte membrane fuel cells are 

summarized in Table 1. 

Designing high-performance 

membranes poses significant 

challenges due to the complexity of 

interactions at molecular and 

macroscopic levels. Traditional 

experimental approaches for 

discovering and optimizing new 

membrane materials are time-

consuming and costly, often involving 

extensive trial-and-error. To address 

these limitations, machine learning has 

emerged as a promising approach, 

leveraging computational power and 

vast datasets to predict material 

properties, optimize manufacturing 

processes, and improve the overall 

performance of fuel cells [10].  
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Table 1 Summary of required characteristics of ICMs to enhance performance of polymer 

electrolyte membrane fuel cells  

 
Requirement Description Target Fuel 

Cell Type 

Refs 

Selective 

permeability 

Developing membranes that restrict fuel crossover 

(e.g., methanol or formic acid) while maintaining 

ion transport, using hybrid or multilayered 

structures. 

DMFCs, 

DFAFCs 

[11,12] 

High proton 

conductivity 

  

Incorporating polymer with high ion-exchange 

capacity and proton-conductive fillers like 

sulfonated polymers or inorganic additives to 

facilitate effective ion transport. 

PEMFCs, 

DMFCs 

[13,14]  

High hydroxide 

conductivity 

Incorporating polymer with high ion-exchange 

capacity and OH-conductive fillers with high ion 

conductivity over a wide relative humidity range 

such quaternary ammonia functionalized 

membrane. 

DMFCs, 

AEMFCs  

[15] 

Chemical 

Stability 

Using robust polymer backbones, such as aromatic 

or partially fluorinated polymers, and employing 

cross-linking or reinforcement techniques to 

enhance resistance to acidic or alkaline 

environments. 

PEMFCs, 

DMFCs, 

DFAFCs, 

AEMFCs 

[16,17] 

Mechanical 

Strength 

Ensuring membrane durability through the use of 

reinforced structures or composite designs to 

prevent deformation and maintain structural 

integrity under operational conditions. 

PEMFCs, 

DMFCs’ 

AEMFCs 

[18,19] 

Thermal Stability Enhancing membrane stability over a range of 

temperatures through thermal stabilizers or 

adaptable microstructures to ensure consistent 

performance. 

PEMFCs, 

DMFCs, 

AEMFCs 

[20,21] 

Water 

Management 

Optimizing the balance between hydrophilic and 

hydrophobic regions to improve hydration, maintain 

high ionic conductivity, and minimize swelling. 

PEMFCs, 

DMFCs 

[22,23] 

Cost Reduction Exploring low-cost, non-fluorinated polymers as 

alternatives to expensive materials like Nafion, 

aiming for a balance between performance and 

affordability. 

PEMFCs, 

DMFCs, 

DFAFCs, 

AEMFCs 

[24,25] 

Advanced 

Fabrication 

Techniques 

Using methods like electrospinning and phase 

inversion to create tailored microstructures that 

enhance ion transport pathways and control 

permeability. 

PEMFCs, 

DMFCs, 

DFAFCs, 

AEMFCs 

[26,27] 

 

 

1.3 Machine Learning for 

Development of Membranes for Fuel 

Cells 

 

Machine learning (ML) can play a 

pivotal role in addressing the 

multifaceted challenges associated with 

fuel cell membranes by facilitating the 

discovery and optimization of advanced 

materials, hybrid membranes, and novel 

fabrication techniques in addition to 

performance prediction [28]. ML 

algorithms can accelerate the 

identification and design of materials 

with desired properties, such as 

improved ionic conductivity, thermal 

stability, and chemical durability. 

Through the analysis of large datasets 

and predictive modeling, ML can 

optimize the synthesis of porous 

framework membranes (PFMs), cross-

linked polymeric structures, and 

inorganic-organic composite 

membranes, aiming to enhance 
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mechanical robustness, reduce fuel 

crossover, and improve ion transport 

mechanisms [29]. By guiding the design 

of these advanced materials, ML can 

significantly contribute to overcoming 

the performance limitations of 

traditional polymeric membranes in fuel 

cell applications, thus expediting the 

development of high-performance, cost-

effective membranes. This article 

discusses and promotes the applications 

of ML in the design and prediction of 

ICMs design properties and 

performance, providing insights into 

how these methods can revolutionize 

fuel cell research.  
 
 

2.0 OVERVIEW OF 

FUNDAMENTALS OF MACHINE 

LEARNING ALGORITHMS FOR 

IEMS DEVELOPMENT 

 

ML which is a branch of artificial 

intelligence (AI) can be used to develop 

algorithms capable of learning from 

prior data and generalize their judgment 

to new observations by exploiting 

primarily statistical methods. 

Particularly, this learning process allows 

ML algorithms to construct models that 

capture insights derived from the data. 

These models are then applied to 

generate predictions or make decisions 

autonomously, without the need for 

predefined programming rules. ML 

algorithms are particularly adept at 

recognizing patterns and correlations 

within datasets, which enables them to 

produce accurate predictions or execute 

decisions when confronted with new, 

previously unseen inputs. This capacity 

for data-driven learning and 

generalization to novel cases is a 

fundamental feature of ML, 

underpinning its diverse applications 

across multiple fields [30]. ML 

algorithms can be classified into several 

categories based on their learning 

approach and the nature of the data as 

illustrated in Figure 2. The main 

classifications include supervised 

learning, unsupervised learning, 

reinforcement learning, semi-supervised 

learning, and transfer learning, each 

offering unique advantages for different 

stages of material discovery and 

optimization in fuel cell applications 

[31]. 

 

 
 

Figure 2 Classification of machine learning algorithms [31] 
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2.1 Supervised Learning  

 

Supervised learning (SL) involves using 

labeled datasets to train models that can 

make predictions or classify data into 

categories. This approach is particularly 

effective in predicting material 

properties for fuel cell membranes, 

where input features (independent 

variables) like temperature, pressure, 

and chemical composition can be used to 

predict outputs such as ionic 

conductivity or chemical stability 

(response of dependent variable) [32]. 

The popular SL algorithms include 

Linear regression which fits a linear 

model based on ordinary least squares, 

which is common benchmark algorithm 

to evaluate the prediction performance 

of other regression algorithms. k-nearest 

neighbor (kNN) is another SL which is a 

simple algorithm that classifies a new 

point by a majority vote of its k nearest 

neighbors in the available dataset [33]. 

On the other hand, logistic regression is 

another linear model for classification 

rather than regression, especially binary 

classification. The logistic function 

allows the calculation of the probability 

of a single trail. Decision tree is another 

algorithm that can learn simple decision 

rules from data features to predict targets 

and can solve both regression and 

classification problems [34]. Naïve 

Bayes is another algorithm that is based 

on Bayes’ theorem with the assumption 

of conditional independence between the 

features [35]. The support vector 

machine (SVM), which is based on the 

Vapnik-Chervonenkis dimension and 

structural risk minimization in statistical 

theory can be not only used to construct 

the hyperplane in a high-dimensional 

space to classify the samples but also it 

can solve regression problems, usually 

known as support vector regression [36]. 

The Gaussian process algorithm which 

is generic SL tool can solve both 

regression and classification problems 

[37]. Finally, Artificial neural network 

(ANN) represents SL algorithm that is 

based on modern neuroscience to 

process information by simulating the 

neural network processing in organic 

brains that a structure that has a multi-

layer perceptron, consisting of many 

connected neurons [38]. A detailed 

review of popular supervised learning 

algorithms and their characteristics have 

been discussed elsewhere [10]. Zhang et 

al. (2020) [39] demonstrated the use of 

supervised learning techniques, such as 

support SVM and NN), for optimizing 

membrane materials in proton exchange 

membrane fuel cells (PEMFCs), 

resulting in improved performance 

prediction accuracy and reduced 

experimental costs. 
 

2.2 Unsupervised Learning  
 

Unsupervised learning (UL) differs from 

SL by working with unlabeled data, 

making it suitable for discovering hidden 

patterns or structures in data without 

predefined labels. Techniques like 

clustering (e.g. K-means) and 

dimensionality reduction methods such 

as Principal Component Analysis (PCA) 

are widely used to categorize materials 

based on their properties or to reduce 

data complexity [32]. For example, Kim 

et al. (2019) [40] applied unsupervised 

learning to classify material properties, 

facilitating the identification of 

promising candidate membrane 

materials for further development. These 

methods are particularly useful in early-

stage research when exploring new 

membrane materials with unknown 

characteristics. 
 

2.3 Reinforcement Learning  
 

Reinforcement learning (RL) focuses on 

training agents to interact with an 

environment, learning strategies that 

maximize cumulative rewards over time. 

This approach is beneficial for 

optimizing complex, dynamic systems, 

such as adjusting operational conditions 
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in fuel cells to maximize efficiency or 

lifespan [41]. Lee et al. (2020) [42] 

employed RL techniques to optimize 

operational parameters for fuel cells, 

showcasing the potential of RL to 

enhance performance in real-time 

applications. RL is particularly 

advantageous when the performance of 

membranes in fuel cell system involves 

variables that dynamically change, 

requiring adaptive decision-making 

strategies. 
 

2.4 Semi-supervised Learning  
 

Semi-supervised learning (SSL) 

combines aspects of both supervised and 

unsupervised learning by using a small 

amount of labeled data along with a 

larger set of unlabeled data. This 

approach is effective when labeled data 

is scarce, which is often the case in new 

membrane material research [43]. 

Wang et al. (2022) [44] utilized semi-

supervised learning to predict fuel cell 

membrane properties with limited 

experimental data, achieving improved 

prediction accuracy and reduced 

reliance on expensive data collection. 

By leveraging unlabeled data, semi-

supervised learning can reduce costs 

associated with generating labeled 

datasets, accelerating the development 

process. 
 

2.5 Transfer Learning  
 

Transfer learning (TL) involves 

adapting a model trained on one 

problem to apply to a different, but 

related problem, which can 

significantly reduce the training time 

for new tasks. This is particularly 

valuable in the development of new 

membrane materials, where data is 

limited but similarities to previously 

studied materials exist [45]. Chen et al. 

(2021) [46] demonstrated that transfer 

learning could be used to adapt models 

trained on known membrane materials 

to predict the properties of new ion 

conducting membranes (ICMs), 

allowing for faster identification of 

high-performance materials for fuel 

cells. 

A summary of various categories of 

machine learning algorithms with their 

applications in fuel cell membranes is 

listed in Table 2.

 

Table 2 Categories of machine learning algorithms with their applications in fuel cell membranes 
 

Category Definition Common 

Algorithms 

Applications Refs 

Supervised 

Learning 

Learning from labeled 

data to map inputs to 

outputs. 

Linear regression, 

SVM, neural 

networks, decision 

trees. 

Property prediction, 

classification tasks, e.g., 

predicting membrane 

ionic conductivity. 

[38,39] 

Unsupervised 

Learning 

Finding patterns in 

unlabeled data 

without explicit 

outputs. 

K-means, PCA, t-

SNE, autoencoders. 

Clustering materials, 

feature extraction, 

anomaly detection in 

membrane data. 

[40] 

Reinforcement 

Learning 

Learning through 

interactions with an 

environment to 

maximize cumulative 

reward. 

Q-learning, DQN, 

policy gradients. 

Process optimization, 

dynamic system control 

for fuel cell efficiency. 

[42] 

Semi-

Supervised 

Learning 

Combining small 

labeled datasets with 

larger unlabeled data. 

Self-training, label 

propagation. 

Property prediction with 

limited labeled data for 

new membrane materials. 

[44] 

Transfer 

Learning 

Using knowledge 

from one problem to 

solve related 

problems. 

Fine-tuning pretrained 

models, transfer of 

feature 

representations. 

Adapting models for 

predicting properties of 

new membranes with 

limited data. 

[46] 
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It can be observed that the cited studies 

illustrate the suitability of application of 

various machine learning techniques in 

the context of fuel cell membrane 

research, providing insights into how 

each method can be effectively used to 

address challenges in the design, 

optimization, and performance prediction 

of membrane materials. This further 

offers pathways to enhance efficiency, 

reduce costs, and expedite the discovery 

of novel materials. Each approach can be 

tailored to specific aspects of membrane 

design and optimization, making ML an 

integral part of modern fuel cell research. 
 

 

3.0 PUBLICLY AVAILABLE 

MACHINE LEARNING 

FRAMEWORKS 

 

The development of ICMs for fuel cells 

can benefit from a range ML frame works 

that are made available. Table 3 presents 

a list of public ML frameworks and their 

applications and advantages. 
 

Table 3 List of public ML frameworks and their applications and advantages 
 

MLTool/Framework Type Applications Advantages Refs 

Scikit-Learn Python Library Property prediction, regression, 

classification, clustering of 

membrane materials. 

Easy to use, versatile 

models for structured 

data analysis. 

[47] 

TensorFlow & PyTorch Deep Learning 

Frameworks 

DNNs for predicting membrane 

performance, CNNs for image-

based analysis of membrane 

microstructure, GANs for 

generating new membrane 

designs. 

Customizable 

architecture, suited 

for complex data-

driven tasks. 

[48,49] 

RDKit & Matminer Chemoinformatics/Ma

terials Informatics 

Feature extraction from polymer 

structures, virtual screening of 

new membrane materials, 

analysis of molecular structures 

for ionic conductivity. 

Integrates chemical 

data with ML, 

detailed molecular 

analysis. 

[54] 

AutoML Tools (e.g., 

TPOT, H2O.ai, 

AutoKeras) 

Automated Machine 

Learning 

Automates model selection for 

optimal membrane material 

properties prediction, enables 

rapid evaluation of different ML 

algorithms for fuel cell 

performance. 

Reduces manual 

model tuning, easier 

experimentation. 

[51] 

GpyTorch & scikit-

optimize 

Gaussian Processes & 

Bayesian Optimization 

Predicting ion conductivity with 

uncertainty quantification, 

optimizing synthesis conditions 

for novel membranes, guiding 

experimental synthesis. 

Effective with small 

datasets, 

probabilistic 

approach. 

[57] 

Graph Neural Networks 

(e.g., DGL, PyTorch 

Geometric) 

Deep Learning for 

Graph Data 

Models complex polymer 

structures and interactions, 

predicts membrane properties 

like stability and conductivity, 

enables discovery of novel 

materials. 

Captures complex 

structural 

information for 

accurate predictions. 

[53] 

Materials Project, 

OpenMM, Quantum 

Espresso 

High-Throughput 

Simulation Platforms 

Provides training data for ML 

models, simulates atomic 

interactions within membranes, 

supports modeling of ion 

transport dynamics in fuel cell 

membranes. 

Enables large dataset 

generation for 

reliable ML models. 

[55] 
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The references cited are directly related 

to the application of machine learning 

techniques in the field of fuel cell 

membrane research. Each reference 

links to studies that employ these tools 

for optimizing the performance, 

synthesis, and characterization of 

membranes for fuel cell applications. 

Scikit-Learn, a versatile Python library, 

is effective for regression, 

classification, and clustering tasks, 

making it useful for predicting 

membrane properties like proton 

conductivity and stability [47]. Deep 

learning (DL) frameworks such as 

TensorFlow and PyTorch enable 

complex modeling through neural 

networks, including convolutional 

neural networks (CNNs) for analyzing 

microstructures and generative 

adversarial networks (GANs) for 

designing new materials [48, 49]. Graph 

neural networks (GNNs), using 

libraries like DGL and PyTorch 

Geometric, excel at representing and 

predicting the properties of complex 

polymer structures, capturing 

interactions at the atomic level [50]. 

Automated machine learning 

(AutoML) tools like TPOT, H2O.ai, 

and AutoKeras facilitate the rapid 

testing and optimization of various ML 

algorithms to predict material 

properties and enhance synthesis 

processes [51]. Bayesian optimization 

and Gaussian Processes, implemented 

through tools like GPyTorch and scikit-

optimize, provide a framework for 

optimizing synthesis conditions and 

design parameters with a focus on 

uncertainty quantification, which is 

critical for guiding experimental efforts 

[52, 53.]. Additionally, 

cheminformatics and materials 

informatics platforms such as RDKit 

and Matminer are valuable for 

extracting features from molecular 

structures and integrating them into ML 

models [54]. High-throughput 

simulation platforms like Materials 

Project, OpenMM [55], and Quantum 

Espresso generate large datasets that 

feed into these ML models, helping to 

predict and optimize ionic transport and 

other membrane properties [56]. These 

tools collectively enhance the design, 

performance prediction, and 

optimization of next-generation ICMs 

for fuel cells. 

 

 

4.0 AREAS WHERE MACHINE 

LEARNING CAN ENHANCE 

FUEL CELL MEMBRANES 

DEVELOPMENT 

 

These applications demonstrate the 

potential of machine learning to 

transform the development of high-

performance fuel cell membranes, 

addressing existing challenges and 

accelerating progress toward more 

efficient and cost-effective energy 

solutions. 

 

4.1 Material Discovery and 

Screening  

 

ML algorithms can predict material 

properties such as ionic conductivity, 

chemical stability [58], and mechanical 

strength based on molecular structures, 

accelerating the identification of novel 

membrane materials [59]. Techniques 

like deep neural networks (DNNs) and 

graph neural networks (GNNs) can 

model complex molecular interactions 

and identify candidates with optimal 

performance characteristics. [60].  

 

4.2 Structure-property 

Relationships  

 

By analyzing large datasets of 

experimental and computational results, 

ML can uncover hidden correlations 

between the structural features of 

polymer electrolyte membranes and 

their functional properties. This 

includes understanding how factors like 
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pore size distribution, crystallinity, and 

polymer chain flexibility affect ionic 

transport and membrane durability. 

Recent advances in deep neural 

networks can be employed to model 

these relationships effectively and 

accurately and to explain physics-

informed DL models. The physics of 

two-phase transient, membrane 

hydration/dehydration, time constants, 

transport dynamics, and electrochemical 

double-layer behaviors can be encoded 

to the neural networks for effective DL 

[61].  Frameworks like Scikit-Learn, 

H2O, and Caffe2 for machine learning 

and PyTorch, TensorFlow, and Keras for 

deep neural networks provide tools for 

developing these predictive models, 

allowing researchers to optimize 

membrane materials based on structural 

parameters. Recently, graph neural 

networks (GNNs) were utilized to 

explore the relationships between the 

molecular structure and properties of 

polymers based on supervised learning, 

enhancing the understanding of how 

modifications at the molecular level can 

improve performance [62, 63]. Recent 

research demonstrates that self-trained 

GNN provided more accurate prediction 

for membrane properties based on 

microstructural features [64]. 

 

4.3 Optimization of Synthesis 

Conditions  

 

ML models, such as Gaussian Processes 

(GPs) and Bayesian Optimization, can 

refine synthesis parameters (e.g., 

temperature, time, concentration) to 

maximize the performance of fuel cell 

membranes, significantly reducing the 

need for extensive trial-and-error in the 

laboratory. For instance, GPs can model 

the relationship between synthesis 

conditions and membrane properties, 

offering a probabilistic approach to 

understanding how changes in 

parameters affect outcomes like 

membrane thickness, porosity, and ionic 

conductivity. By incorporating 

uncertainty into predictions, GPs 

provide a reliable means to explore the 

parameter space, enabling more efficient 

experimentation [65]. Bayesian 

Optimization can then use these models 

to identify the optimal synthesis 

conditions that enhance membrane 

performance, such as achieving a 

specific porosity or maintaining a 

uniform membrane thickness [47]. 

Recent research has utilized these 

approaches to optimize performance of 

fuel cell with polymer electrolyte 

membrane [66].  

 

4.4 Performance Prediction under 

Varying Conditions 

 

ML tools can predict the performance of 

membranes under different operating 

conditions such as temperature, 

humidity, and pressure, offering insights 

into stability and efficiency across a 

range of environments in fuel cells, 

which is crucial for assessing their 

viability before large-scale 

manufacturing. For example, Random 

Forest models have been used to predict 

proton conductivity and mechanical 

properties of fuel cell membranes at 

varying temperatures and humidity 

levels, providing a comprehensive 

understanding of their operational 

stability [63, 67]. Moreover, Support 

Vector Machines (SVM) have been 

applied efficiently to model performance 

of PEMFC with considerable reduction 

of the samples used in the training phase 

of the SVM model and allowed 

prediction of the voltage of the PEMFC 

and  capturing its dynamic characteristic 

[68]. Furthermore, gradient boosting 

methods like XGBoost have been 

employed to predict the efficiency of 

fuel cells based on input features like 

membrane thickness and ionic 

conductivity, allowing for targeted 

optimization [69.]. On the other hand, 

Neural networks, such as Long Short-
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Term Memory (LSTM) networks, have 

proven effective in forecasting 

performance degradation over time 

under fluctuating conditions and was 

used to develop dynamic performance of 

PEMFC [70]. 
 

4.5 Simulation and Modeling of Ionic 

Transport 
 

ML-assisted simulations can enhance 

the understanding of ion transport 

mechanisms within polymer 

membranes. DL models can predict 

proton or hydroxide ion conductivity 

and diffusion pathways, supplementing 

traditional molecular dynamics 

simulations and enabling more accurate 

modeling of ion transport dynamics. For 

example, deep neural networks have 

been employed to predict ion 

conductivity in polymer membranes, 

using datasets from molecular dynamics 

simulations to train models with high 

accuracy [71]. These models have been 

implemented in frameworks like 

TensorFlow and PyTorch to analyze the 

intricate ion-movement pathways within 

complex polymer structures. Graph 

neural networks (GNNs) can also be 

applied to capture spatial relationships in 

membrane structures, aiding in the 

understanding of how structural features 

impact ion transport [72]. Additionally, 

Gaussian process regression models, 

such as those implemented in GPyTorch, 

have been used to refine predictions of 

ion mobility based on changes in 

temperature or pressure conditions, 

complementing the predictions from 

molecular dynamics simulations [73]. 

These ML/DL tools provide valuable 

insights that extend beyond the 

capabilities of traditional simulations, 

facilitating a more thorough 

understanding of ion transport behaviors 

in polymer electrolyte membranes. 
 

4.6 Design of Hybrid Membranes:  
 

ML can facilitate the design and 

optimization of composite or hybrid 

membranes that combine organic and 

inorganic materials to enhance thermal 

stability, mechanical strength, and 

overall conductivity. By exploring a 

large compositional space, ML can 

identify promising combinations and 

configurations that may be challenging 

to discover through traditional 

experimental methods. For example, 

Bayesian optimization models, 

implemented through frameworks like 

Scikit-learn and Optuna, have been used 

to identify optimal ratios of inorganic 

fillers such as silica or graphene oxide 

within polymer matrices, leading to 

improved mechanical properties and 

thermal stability [74]. Similarly, deep 

learning algorithms, using platforms like 

TensorFlow, have been applied to 

predict how variations in polymer blends 

affect the overall conductivity of hybrid 

membranes [75]. Gaussian process 

regression models have also been 

employed to optimize the distribution 

and interaction of organic-inorganic 

phases in hybrid membranes, aiding in 

the discovery of new compositions with 

balanced ionic conductivity and 

durability [76]. These ML frameworks 

streamline the discovery process, 

reducing the need for labor-intensive 

experimentation and accelerating the 

development of advanced composite 

membranes. 

 

4.7 Lifetime Prediction and 

Degradation Analysis  

 

One of the key challenges in fuel cell 

deployment is predicting the long-term 

durability of membranes. Degradation 

can occur due to mechanical stress, 

chemical attack, or thermal instability, 

impacting the membrane's performance 

over time. DL models trained on long-

term operational data can predict 

degradation rates and failure modes of 

membranes under various conditions. 

For example, recurrent neural networks 

(RNNs), implemented through 



30  Mohamed Mahmoud Nasef & Mohamed Hadi Habaebi 

frameworks like TensorFlow and 

Keras, have been used to analyze time-

series data from fuel cell operation, 

providing insights into how operational 

conditions impact membrane 

degradation [77]. Additionally, survival 

models like Cox proportional hazards 

models can be employed to assess the 

probability of membrane failure over 

time, helping to identify the most 

critical degradation mechanisms [78]. 

This helps in designing more durable 

membranes by understanding the 

critical factors that influence their 

lifespan. Techniques like time-series 

analysis, RNNs or survival models are 

particularly useful in this context, 

allowing researchers to pinpoint 

operational thresholds and adjust 

material compositions accordingly to 

prolong membrane life. 

 

4.8 Cost Reduction and Scale-up  

 

By integrating ML with economic and 

environmental impact assessments, 

researchers can identify membrane 

materials and processes that balance 

performance with cost-effectiveness, 

aiding the transition from lab-scale 

discoveries to commercially viable 

solutions [79]. ML can help to develop 

robotic chemists resembling human 

features that can independently work in 

a standard laboratory using various 

apparatuses to conduct thousands of 

experiments that normally takes years 

in months allowing big datasets, which 

allowing completion of R&D cycle by 

combining this with Bayesian 

optimization [80]. ML can also support 

the scaling up of fabrication processes 

by predicting production challenges and 

optimizing resource use. For example, 

random forest models, implemented 

through frameworks like Scikit-learn, 

have been used to evaluate the trade-

offs between membrane performance 

and production costs, allowing 

researchers to identify materials that 

provide the best value for specific 

applications [81]. Moreover, 

reinforcement learning approaches, 

utilizing platforms like TensorFlow, 

can optimize fabrication processes by 

simulating different production 

scenarios, thereby identifying the most 

efficient pathways for scaling up 

membrane synthesis while minimizing 

waste [82]. Gaussian process models, 

available through GPyTorch, have also 

been applied to predict energy 

consumption and environmental impact 

metrics during the membrane 

manufacturing process, helping to 

pinpoint areas where energy use can be 

reduced without sacrificing product 

quality [83]. These ML-driven 

approaches facilitate the design of 

economically and environmentally 

sustainable fuel cell membranes, 

ultimately bridging the gap between 

laboratory innovation and market-ready 

products. 

 

4.9 Virtual Screening and Inverse 

design  

 

With the help of ML, virtual screening 

can rapidly evaluate thousands of 

potential membrane materials, 

narrowing down the most promising 

options. Techniques such as random 

forests or gradient boosting are often 

used to rank candidate materials based 

on their predicted properties. For 

instance, Random Forest models 

implemented via the Scikit-learn library 

have been utilized to predict key 

properties like proton conductivity, 

enabling a faster assessment of potential 

candidates [84]. Furthermore, 

generative models like generative 

adversarial networks (GANs) or 

variational autoencoders (VAEs) can be 

applied for inverse design, suggesting 

new membrane structures that meet 

specific performance criteria. For 

example, GANs, using frameworks like 

TensorFlow, have been employed to 
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generate new polymer structures with 

enhanced ionic transport properties 

while maintaining chemical robustness 

[85]. Recent research has demonstrated 

the use of ML in screening a large 

library of polymer electrolytes, 

identifying candidates with high proton 

conductivity while maintaining 

chemical stability under operating 

conditions [86]. This approach reduced 

the time to identify new materials by 

over 50% compared to traditional 

methods, underscoring the efficiency of 

ML in the material discovery process. 

 

4.10 Materials Discovery and 

Design 

 

ML models can be trained on datasets 

of known IEMs to predict key 

properties like ionic conductivity, 

mechanical strength, thermal stability, 

and chemical resistance. This helps in 

identifying new materials with 

desirable characteristics. ML-based 

virtual screening of materials can 

rapidly identify candidates that meet 

specific criteria. This significantly 

reduces the time and cost associated 

with traditional trial-and-error 

experimental methods. Chemistry-

Informed Machine Learning, which 

combines the principles of chemistry 

with advanced ML techniques can be 

used for polymer electrolyte discovery 

combines to accelerate the 

identification and optimization of 

polymer electrolytes for applications 

like fuel cells, electrolyzers and 

batteries [87]. In this approach, domain-

specific chemical knowledge, such as 

molecular structures, bonding 

interactions, and reaction mechanisms, 

is integrated into ML models to 

improve their predictive accuracy and 

relevance [88]. For example, 

incorporating information about 

polymer chain flexibility, ion-exchange 

capacities, or interaction energies 

between polymer segments can help 

ML models more accurately predict 

properties like ionic conductivity, 

mechanical strength, and thermal 

stability [89]. This approach allows 

researchers to screen vast libraries of 

potential polymer candidates, predict 

their performance under different 

conditions, and identify optimal 

materials for specific applications [90]. 

By combining the chemical insights 

with power of ML that is abbreviated as 

CIML can reduce the need for time-

consuming experimental trials, 

enabling faster discovery and 

development of advanced polymer 

electrolytes with desired properties 

(Zhang et al., 2020). This synergy is 

particularly valuable in designing 

materials that meet the complex 

performance criteria required for 

efficient energy conversion and storage 

[91]. 

 

4.11 Optimization of 

Manufacturing Processes   

 

Beyond material discovery and 

performance prediction, ML can 

optimize the manufacturing processes 

of ion conducting membranes, 

enhancing their quality and consistency 

[92,93]. ML algorithms can analyze the 

effects of various manufacturing 

parameters such as casting thickness, 

curing temperature, and solvent 

selection on the final properties of 

membranes [94]. Using techniques like 

regression analysis or Bayesian 

optimization, researchers can identify 

the optimal set of parameters that yield 

membranes with the desired thickness, 

mechanical strength, and uniformity 

[95]. ML models can monitor the 

manufacturing process in real-time, 

identifying deviations or anomalies that 

could affect the quality of the 

membranes [96]. This enables 

predictive maintenance and quality 

control, reducing waste and improving 

yield [97]. A support vector machine 
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model used in membrane casting 

processes improved thickness 

consistency by 15%, leading to more 

reliable performance in PEMFC 

applications [93]. 

 

 

5.0 CHALLENGES AND 

PROSPECTIVE   

 

The convergence of ML with fuel cell 

research holds the promise of unlocking 

new membrane materials and 

optimizing their performance in ways 

previously unimaginable. However, the 

current works in the open literature 

demonstrates a lack of DL models 

applications in developing more 

accurate results for the new membrane 

materials due to lack of large datasets. 

These large datasets are basically data 

collected during the monitoring of the 

experiment or generated via extensive 

simulation. Further, since these large 

datasets are not made public, it hinders 

the participation of a larger number of 

curious researchers and stake-holders. 

Furthermore, lack of standardization to 

data collection standard operating 

procedures (SOPs) and guidelines 

hinders gauging the accuracy of the 

developed models and prevents the 

reproducibility of the results. By 

accelerating the pace of discovery and 

enabling more efficient manufacturing 

processes, ML has the potential to make 

fuel cells a more viable and sustainable 

energy solution. Despite its potential, 

the integration of ML in membrane 

design and performance prediction 

faces several challenges. Data 

availability remains a bottleneck, as 

large, high-quality datasets are essential 

for training robust models. 

Additionally, the complexity of ML 

models can make them difficult to 

interpret, hindering the ability to gain 

mechanistic insights from their 

predictions. Future research should 

focus on developing more interpretable 

ML models, improving data sharing 

across research institutions, and 

integrating ML with high-throughput 

experimentation. Table 4 summarizes 

the primary challenges and strategic 

approaches to overcoming them for 

advancing ML-based development of 

ICMs for fuel cell applications. 

 
Table 4 Summary of challenges and suggested solutions for integrating ML in the design and 

performance prediction of ICMs for fuel cells 

 
Challenge Description Potential Solutions 

Data Availability 

& Quality 

- Large, high-quality datasets are 

required for training ML models, but 

data are often limited, fragmented, or 

inconsistent across studies. 

- Develop open-access databases and 

standardized data repositories. 

- Encourage data sharing and 

collaboration across research 

institutions and industry. 

- Use high-throughput experimentation 

to generate comprehensive datasets. 

Model 

Interpretability 

- Complex ML models, like deep 

neural networks, often act as "black 

boxes," making it difficult to gain 

mechanistic insights into membrane 

behavior. 

- Focus on developing explainable AI 

(XAI) methods for better insight into 

model decisions. 

- Combine data-driven methods with 

physics-based models to provide a 

more interpretable approach. 

- Employ hybrid models that balance 

accuracy and transparency. 

Model 

Transferability 

- ML models may not generalize well 

when applied to new materials or 

different operating conditions, 

limiting their applicability. 

- Integrate domain knowledge, such as 

physical and chemical principles, into 

ML models to enhance generalizability. 

- Use active learning to identify critical 

experiments, helping models adapt to 
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Challenge Description Potential Solutions 

new conditions. 

- Perform cross-validation on diverse 

datasets.  
Resource-

Intensive Data 

Generation 

- Experimental data collection can be 

time-consuming and costly, slowing 

down model development. 

- Combine ML with high-throughput 

experimentation and computational 

simulations for faster data acquisition. 

- Use active learning to prioritize 

experiments that provide the most 

informative data. 

- Explore virtual screening to predict 

promising candidates before physical 

testing. 

Balancing  

Accuracy and 

Physics 

- ML models can be accurate but lack 

physical grounding, potentially 

leading to predictions that defy 

known physical or chemical laws. 

- Develop hybrid models that integrate 

physics-based simulations with ML 

predictions. 

- Use transfer learning to apply 

knowledge from well-studied systems 

to new materials. 

- Regularly validate model predictions 

with experimental data to ensure 

reliability. 

Scalability of 

Computational 

Models 

 

- Scaling ML models to study 

complex membrane structures and 

performance under a wide range of 

conditions can be computationally 

expensive. 

- Utilize cloud-based ML frameworks 

for distributed computing (e.g., 

TensorFlow, PyTorch). 

- Optimize models using 

dimensionality reduction techniques 

like PCA to focus on key features. 

- Employ parallel processing for 

computationally intensive tasks. 

 

Lack of Deep 

Learning models 

 

- ML requires manual selection of 

features and fingerprinting, limiting 

the capabilities of AI applications. 

- Experimenting with several deep 

learning models with big datasets. 

Lack of big 

datasets 

 

- Utilizing deep learning for better 

accuracy requires large datasets but 

requires more computational 

resources. 

- More initiatives are needed to 

generate large experimental and 

simulation-based datasets to facilitate 

the use of new and powerful deep 

learning models. 

Lack of 

standardized 

public datasets 

 

- Public datasets require sharing 

experimental and emulation data with 

other research groups around the 

globe and opens the work for more 

scrutiny. 

- Standardization efforts are long and 

tedious tasks and often come with 

conflicting interests. 

- Public datasets allow for fairer and 

more accurate benchmarking and fine-

tuning of models, while standardization 

exercises allow for reproducibility of 

results. 

 

 

6.0 CONCLUSIONS  

 

ML approaches provide a more efficient 

alternative transformative means by 

leveraging large datasets and advanced 

algorithms to predict membranes 

material properties, optimize 

fabrication processes, and simulate 

performance in fuel cells under various 

operating conditions. By analyzing the 

relationships between structural 

features and functional properties, ML 

can guide the design of new membrane 

materials and facilitate the discovery of 

novel compositions. Additionally, ML 

can help predict the performance of 

membranes in different environmental 

conditions, thereby enhancing the 
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stability and durability of fuel cell 

systems. ML further offers significant 

computation efficiency and taking into 

account the effects of physics that are 

yet unknown or formulated but 

contained in training databases. As a 

result, ML-driven methods have the 

potential to revolutionize the 

development of ICMs, making them 

more efficient, cost-effective, and 

scalable for a variety of applications, 

from portable devices to automotive 

power systems. Particularly, ML can 

significantly enhance the development 

of ICMs for fuel cell applications. This 

is likely to lead to and advancement in 

fuel cell technology by reducing the 

cost and improving the 

durability/performance. Embracing 

ML-driven approaches will be crucial 

for the next generation of high-

efficiency, durable, and cost-effective 

fuel cells, paving the way for a cleaner 

energy future. 

 

 

CONFLICTS OF INTEREST 

 

The author(s) declare(s) that there is no 

conflict of interest regarding the 

publication of this paper. 

 

 

REFERENCES  

 

[1] Acar, C., Beskese, A., & Tekin 

Temur, G. (2022). Comparative 

fuel cell sustainability assessment 

with a novel approach. 

International Journal of Hydrogen 

Energy, 47(1), 575–594. 

[2] Brodt, M., Müller, K., Kerres, J., 

Katsounaros, I., Mayrhofer, K., 

Preuster, P., Wasserscheid, P., & 

Thiele, S. (2021). The 2-propanol 

fuel cell: A review from the 

perspective of a hydrogen energy 

economy. Energy Technology, 

9(9), 2100164. 

[3] Wang, Y., Yuan, H., Martinez, A., 

Hong, P., Xu, H., & Bockmiller, F. 

R. (2021). Polymer electrolyte 

membrane fuel cell and hydrogen 

station networks for automobiles: 

Status, technology, and 

perspectives. Advances in Applied 

Energy, 2, 100011. 

[4] Naef, A. A. Q., & Abdulrahman, 

G. A. Q. (2024). A recent 

comprehensive review of fuel 

cells: History, types, and 

applications. International 

Journal of Energy Research, 1, 

7271748. 

[5] Ahmad, S., Nawaz, T., Ali, A., 

Orhan, M. F., Samreen, A., & 

Kannan, A. M. (2022). An 

overview of proton exchange 

membranes for fuel cells: 

Materials and manufacturing. 

International Journal of Hydrogen 

Energy, 47(44), 19086–19131. 

[6] Ng, W. K., Wong, W. Y., Rosli, N. 

A. H., & Loh, K. S. (2023). 

Commercial anion exchange 

membranes (AEMs) for fuel cell 

and water electrolyzer 

applications: Performance, 

durability, and materials 

advancement. Separations, 10, 

424. 

[7] Agboola, O., Fayomi, O. S. I., 

Ayodeji, A., Ayeni, A. O., Alagbe, 

E. E., Sanni, S. E., Okoro, E. E., 

Moropeng, L., Sadiku, R., 

Kupolati, K. W., & Oni, B. A. 

(2021). A review on polymer 

nanocomposites and their 

effective applications in 

membranes and adsorbents for 

water treatment and gas 

separation. Membranes, 11(2), 

139. 

[8] Hwang, S., Lee, H. G., Jeong, Y.-

G., Choi, C., Hwang, I., Song, S. 

H., Nam, S. Y., Lee, J. H., & Kim,       

K. (2022). Polymer electrolyte 

membranes containing 

functionalized organic/inorganic 



                          Machine Learning for Accelerating Development of Ion                  35 

 

 

composite for polymer electrolyte 

membrane fuel cell applications. 

International Journal of 

Molecular Sciences, 23(22), 

14252. 

[9] Tellez-Cruz, M. M., Escorihuela, 

J., Solorza-Feria, O., & Compañ, 

V. (2021). Proton exchange 

membrane fuel cells (PEMFCs): 

Advances and challenges. 

Polymers, 13(18), 3064. 

[10] Osman, A. I., Nasr, M., Farghali, 

M., Bakr, S. S., Eltaweil, A. S., 

Rashwan, A. K., & Abd El 

Monaem, E. M. (2024). Machine 

learning for membrane design in 

energy production, gas separation, 

and water treatment: A review. 

Environmental Chemistry Letters, 

22(2), 505–560. 

[11] Xu, T., Wang, L., & Liu, Y. 

(2020). Prediction of proton 

conductivity of fuel cell 

membranes using machine 

learning. Journal of Power 

Sources, 479, 228301. 

[12] Park, J., Kim, Y., & Lee, S. 

(2022). Multilayered structures for 

methanol crossover reduction in 

DMFCs. Membranes, 12(9), 872. 

[13] Zhao, C., Wu, Y., & Chen, X. 

(2019). Sulfonated polymers for 

enhanced proton conduction. 

Chemistry of Materials, 31(3), 

1123–1133. 

[14] Wang, J., Chen, Y., & Zhang, Y. 

(2021). Hybrid membrane 

structures for improved proton 

conductivity. ACS Applied 

Materials & Interfaces, 13(15), 

17885–17895. 

[15] Lei, M., Zhang, Q., Chi, M., Yu, 

Y., Jiang, H., Wang, S., & Min, D. 

(2021). Anion exchange 

membrane with high hydroxide 

ion conductivity and robust tensile 

strength fabricated from 

quaternary ammonia 

functionalized Pinus contorta, 

Dougl. chip. Industrial Crops and 

Products, 166, 113458. 

[16] Kim, H., Lee, J., & Choi, Y. 

(2021). Cross-linked membranes 

for enhanced chemical stability in 

PEMFCs. Journal of Membrane 

Science, 622, 119935. 

[17] Liu, Y., Zhang, Q., & Zhao, J. 

(2020). Advances in aromatic 

polymer backbones for fuel cell 

membranes. Polymer Reviews, 

60(2), 195–214. 

[18] Li, X., Huang, Y., & Zhao, C. 

(2020). Composite membranes for 

enhanced mechanical properties in 

fuel cells. Advanced Functional 

Materials, 30(12), 2000548. 

[19] Chen, G., Xu, Y., & Wang, J. 

(2021). Reinforcement strategies 

for polymer electrolyte 

membranes. Journal of Applied 

Polymer Science, 138(21), 50771. 

[20] Zhang, Y., Chen, Z., & Liu, H. 

(2022). Thermally stable 

membranes for high-temperature 

PEMFCs. Energy & 

Environmental Science, 15(3), 

1766–1780. 

[21] Yang, F., Li, H., & Liu, Y. (2022). 

Thermal stability of novel 

membrane materials. Journal of 

Power Sources, 526, 231007. 

[22] Liu, Z., Wang, Y., & Zhao, Q. 

(2022). Hydration management in 

PEM fuel cell membranes. 

Journal of Membrane Science, 

641, 119558. 

[23] Kim, S., Lee, H., & Park, J. 

(2020). Hydrophilic-hydrophobic 

balance in ion exchange 

membranes. Water Research, 171, 

115489. 

[24] Park, H., Lee, J., & Kim, S. 

(2023). Non-fluorinated polymer 

membranes for cost-effective fuel 

cells. Renewable Energy, 213, 

115973. 

[25] Zhao, X., Zhang, Y., & Liu, J. 

(2021). Economical membrane 

materials for PEMFCs. Energy 



36  Mohamed Mahmoud Nasef & Mohamed Hadi Habaebi 

Conversion and Management, 

236, 114432. 

[26] Zhang, L., Wang, S., & Li, Y. 

(2022). Electrospun membranes 

for tailored ion pathways. 

Advanced Energy Materials, 

12(9), 2101234. 

[27] Chen, X., Li, Y., & Wang, T. 

(2021). Phase inversion methods 

for membrane design. Materials 

Today, 45, 184–203. 

[28] Legala, A., Zhao, J., & Li, X. 

(2022). Machine learning 

modeling for proton exchange 

membrane fuel cell performance. 

Energy and AI, 10(1), 100183. 

[29] Griesemer, S., Xia, Y., & 

Wolverton, C. (2023). 

Accelerating the prediction of 

stable materials with machine 

learning. Nature Computer 

Science, 3(11), 934–945. 

[30] Barbierato, E., & Gatti, A. (2024). 

The challenges of machine 

learning: A critical review. 

Electronics, 13(2), 416. 

[31] Kibrete, F., Trzepieciński, T., 

Gebremedhen, H. S., & 

Woldemichael, D. E. (2023). 

Artificial intelligence in predicting 

mechanical properties of 

composite materials. Journal of 

Composites Science, 7(9), 364. 

[32] Batool, M., Sanumi, O., & 

Jankovic, J. (2024). Application of 

artificial intelligence in materials 

science, with a special focus on 

fuel cells and electrolyzers. 

Energy and AI, 18, 100424. 

[33] Ali, A., Hamraz, M., Kumam, P., 

Khan, D. M., Khalil, U., Sulaiman, 

M., & Khan, Z.  (2020). A k-

nearest neighbours based 

ensemble via optimal model 

selection for regression. IEEE 

Access, 8, 132095–132105. 

[34] Dreiseitl, S., & Ohno-Machado, L. 

(2002). Logistic regression and 

artificial neural network 

classification models: A 

methodology review. Journal of 

Biomedical Informatics, 35(5–6), 

352–359. 

[35] Ismail, M., Hassan, N., & 

Bafjaish, S. S. (2020). 

Comparative analysis of Naive 

Bayesian techniques in health-

related classification tasks. 

Journal of Soft Computing and 

Data Mining, 1(2), 1–10. 

[36] Hao, P. Y., Chiang, J. H., & Chen, 

Y. D. (2022). Possibilistic 

classification by support vector 

networks. Neural Networks, 149, 

40–56. 

[37] Sfeir, G., Rodrigues, F., & Abou-

Zeid, M. (2022). Gaussian process 

latent class choice models. 

Transportation Research Part C: 

Emerging Technologies, 136, 

103552. 

[38] Mohamed, A., Ibrahem, H., & 

Kim, K. (2022). Machine 

learning-based simulation for 

proton exchange membrane 

electrolyzer cell. Energy Reports, 

8, 13425–13437. 

[39] Zhang, X., Liu, Y., & Wu, G. 

(2020). Machine learning-assisted 

material design for proton 

exchange membrane fuel cells. 

Journal of Power Sources, 450, 

227602. 

[40] Kim, J., Park, H., & Han, S. 

(2019). Unsupervised learning for 

classification of fuel cell 

materials. ACS Applied Materials 

& Interfaces, 11(18), 16512–

16522. 

[41] Shuai, Q., Wang, Y., Jiang, Z., & 

Hua, Q. (2024). Reinforcement 

learning-based energy 

management for fuel cell electric 

vehicles considering fuel cell 

degradation. Energies, 17(7), 

1586. 

[42] Lee, H., Kim, D., & Chen, Z. 

(2020). Reinforcement learning 

for optimizing fuel cell operational 



                          Machine Learning for Accelerating Development of Ion                  37 

 

 

parameters. Electrochimica Acta, 

354, 136756. 

[43] Reddy, Y. C. P., Pulabaigari, V., & 

Reddy, E. B. (2018). Semi-

supervised learning: A brief 

review. International Journal of 

Engineering & Technology, 7(1–

8), 81. 

[44] Wang, Y., Li, J., & Zhang, H. 

(2022). Semi-supervised learning 

for predicting fuel cell membrane 

properties. Journal of Membrane 

Science, 638, 119634. 

[45] Chato, L., & Regentova, E. 

(2023). Survey of transfer learning 

approaches in the machine 

learning of digital health sensing 

data. Journal of Personalized 

Medicine, 13(12), 1703. 

[46] Chen, Q., Zhao, L., & Xu, K. 

(2021). Transfer learning 

approach for fuel cell material 

property prediction. Advanced 

Functional Materials, 31(4), 

2007512. 

[47] Ding, R., Zhang, S., Chen, Y., Rui, 

Z., Hua, K., Wu, Y., Li, X., Duan, 

X., Wang, X., Li, J., & Liu, J. 

(2022). Application of machine 

learning in optimizing proton 

exchange membrane fuel cells: A 

review. Energy and AI, 9, 100170. 

[48] Su, D., Zheng, J., Ma, J., Dong, Z., 

Chen, Z., & Qin, Y. (2023). 

Application of machine learning 

in fuel cell research. Energies, 

16(11), 4390. 

[49] Paciocco, J., Cawte, T., & 

Bazylak, A. (2023). Predicting 

optimal membrane hydration and 

ohmic losses in operating fuel 

cells with machine learning. 

Journal of Power Sources, 573, 

233119. 

[50] Qin, S., Jiang, S., Li, J., 

Balaprakash, P., Van Lehn, R. C., 

& Zavala, V. M. (2023). Capturing 

molecular interactions in graph 

neural networks: A case study in 

multi-component phase 

equilibrium. Digital Discovery, 

2(1), 138–151. 

[51] Baratchi, M., Wang, C., Limmer, 

S., van Rijn, J. N., Hoos, H., Bäck, 

T., & Olhofer, M. (2024). 

Automated machine learning: 

past, present and future. Artificial 

Intelligence Review 2024, 57(5), 

122. 

[52] Gardner, J. R., Pleiss, G., 

Weinberger, K. Q., & Wilson, A. 

G. (2018). GPyTorch: Blackbox 

matrix-matrix Gaussian process 

inference with GPU acceleration. 

In Advances in Neural 

Information Processing Systems 

(NeurIPS), 7576–7586. 

[53] Head, T., MechCoder, Louppe, G., 

Shcherbatyi, I., & others. (2018). 

scikit-optimize: Sequential model-

based optimization. Journal of 

Open Source Software, 3(29), 900. 

[54] Li, K., Wang, J., Song, Y., & 

Wang, Y. (2023). Machine 

learning-guided discovery of ionic 

polymer electrolytes for lithium 

metal batteries. Nature 

Communications, 14(1), 2789. 

[55] Ding, Y., & Huang, J. (2024). 

Implementation and validation of 

an OpenMM plugin for the deep 

potential representation of 

potential energy. International 

Journal of Molecular Sciences, 

25(3), 1448. 

[56] Wheatle, B.K., Fuentes, E.F, 

Lynd, N.A., Ganesan, V. (2020). 

Design of polymer blend 

electrolytes through a machine 

learning approach, 

Macromolecules,  53 (21), 9449–

9459. 

[57] Martin, T. B., & Audus, D. J. 

(2023). Emerging trends in 

machine learning: A polymer 

perspective. ACS Polymers Au, 

3(3), 239–258. 

[58] Zou, X., Pan, J., Sun, Z., Wang, 

B., Jin, Z., Xu, G., & Yan, F. 

(2021). Machine learning analysis 



38  Mohamed Mahmoud Nasef & Mohamed Hadi Habaebi 

and prediction models of alkaline 

anion exchange membranes for 

fuel cells. Energy & 

Environmental Science, 14(7), 

3965–3975. 

[59] Zhai, F.-H., Zhan, Q.-Q., Yang, 

Y.-F., Ye, N.-Y., Wan, R.-Y., 

Wang, J., Chen, S., & He, R.-H. 

(2022). A deep learning protocol 

for analyzing and predicting ionic 

conductivity of anion exchange 

membranes. Journal of Membrane 

Science, 642, 119983. 

[60] Park, J., Shim, Y., Lee, F., 

Rammohan, A., Goyal, S., Shim, 

M., Jeong, C., & Kim, D. S. 

(2022). Prediction and 

interpretation of polymer 

properties using the graph 

convolutional network. ACS 

Polymers Au, 2(4), 213–222. 

[61] Wang, Y., Seo, B., Wang, B., et al. 

(2020). Fundamentals, materials, 

and machine learning of polymer 

electrolyte membrane fuel cell 

technology. Energy and AI, 1, 

100014. 

[62] Queen, O., McCarver, G. A., 

Thatigotla, S., Abolins, B. P., 

Brown, C. L., Maroulas, V., & 

Vogiatzis, K. D. (2023). Polymer 

graph neural networks for 

multitask property learning. Npj 

Computational Materials, 9(1), 1–

10. 

[63] Kaiser, R., Ahn, C-Y., Kim, Y-H., 

Park, J-C. (2024). Towards 

reliable prediction of performance 

for polymer electrolyte membrane 

fuel cells via machine learning-

integrated hybrid numerical 

simulations. Processes, 12(6), 

1140. 

[64] Gao, Q., Dukker, T.,   

Schweidtmann , A. M. (2023). 

Self-supervised graph neural 

networks for polymer property 

prediction, Molecular Systems 

Design & Engineering, 9, 1130–

1143. 

[65] Deringer, V. L., Bartók, A. P.,  

Bernstein, N., Wilkins, D. M., 

Ceriotti, M., Csányi, G. (2021). 

Gaussian process regression for 

materials and molecules, 

Chemical Reviews, 121(16), 

10073–10141. 

[66] Echabarri, S., Do, P., Vu, H-C., 

Bornand, B. (2024). Machine 

learning and Bayesian 

optimization for performance 

prediction of proton-exchange 

membrane fuel cells, Energy and 

AI, 17, 100380. 

[67] Hussain, I., Sajjad, U., Abbas, N., 

Sultan, M., Sangeetha, T., Ali, H. 

M., Said, Z., Yan, W-M. (2024). 

Humidification potential 

optimization of various 

membranes for proton exchange 

membrane fuel cell: Experiments 

and deep learning assisted 

metaheuristics. Alexandria 

Engineering Journal, 87, 424–

447. 

[68] Durango, J. M., González-

Castaño, C., Restrepo, C., Muñoz, 

J. (2022). Application of support 

vector machine to obtain the 

dynamic model of proton-

exchange membrane fuel cell. 

Membranes, 12(11), 1058  

[69] Ullah, A. (2024). Optimization 

and predictive modeling of 

membrane based produced water 

treatment using machine learning 

models. Chemical Engineering 

Research and Design, 207, 65–76.  

[70] Wang, B., Yang, Z., Ji, M., Shan, 

J., Ni, M., Hou, Z., Cai, J., Gu, X., 

Yuan X., Gong, Z., Du, Q., Yin, 

Y., Jiao, K. (2023). Long short-

term memory deep learning model 

for predicting the dynamic 

performance of automotive 

PEMFC system. Energy and AI, 

14, 100278. 

[71] Kang, J., Kim, H., & Lee, Y. 

(2022). Deep learning prediction 

of ion conductivity in polymer 



                          Machine Learning for Accelerating Development of Ion                  39 

 

 

electrolyte membranes using 

molecular dynamics datasets. 

Journal of Membrane Science, 

645, 120–136. 

[72] Li, X., Zhang, Y., & Chen, Z. 

(2021). Graph neural networks for 

modeling ion transport in complex 

membrane structures. Nature 

Communications, 12, 3587. 

[73] Zhou, T., Wang, J., & Ma, L. 

(2023). Gaussian process 

regression for predicting ion 

mobility in polymer electrolytes: 

A combination with molecular 

dynamics simulations. Advanced 

Functional Materials, 33(7), 

2200457. 

[74] Wang, J., Liu, X., & Zhao, H. 

(2021). Application of Bayesian 

optimization for the enhancement 

of mechanical properties in hybrid 

polymer-inorganic membranes. 

Journal of Membrane Science, 

628, 119246. 

[75] Chen, Q., Wang, Y., & Lee, T. 

(2022). Deep learning approaches 

for predicting the conductivity of 

composite polymer electrolyte 

membranes. Advanced Materials, 

34(5), 2201234. 

[76] Smith, D. R., Patel, A., & Wu, P. 

(2023). Gaussian process 

regression for optimizing hybrid 

membrane compositions: A new 

approach to organic-inorganic 

material discovery. Journal of 

Power Sources, 545, 231978. 

[77] Smith, A. R., Patel, S., & Huang, 

L. (2021). Application of recurrent 

neural networks for predicting 

membrane degradation in proton 

exchange membrane fuel cells. 

Journal of Power Sources, 492, 

229694. 

[78] Jones, D. M., Kim, J., & Lee, Y. 

(2022). Survival analysis for 

evaluating the lifespan of fuel cell 

membranes under various 

operational conditions. 

Electrochimica Acta, 407, 

139863. 

[79] Yin, H., Xu, M., Luo, Z., Bi, X., 

Li, J., Zhang, S., & Wang, X. 

(2024). Machine learning for 

membrane design and discovery. 

Green Energy & Environment, 

9(1), 54–70. 

[80] Ding, R., Ding, Y., Zhang, H., 

Wang, R., Xu, Z., Liu, Y., Yin, 

W., Wang, J., Li, J., & Liu, J. 

(2021). Applying machine 

learning to boost the development 

of high-performance membrane 

electrode assembly for proton 

exchange membrane fuel cells. 

Journal of Materials Chemistry A, 

9(11), 6841–6850. 

[81] Lee, S., Park, J., & Choi, K. 

(2021). Machine learning for 

economic optimization of 

membrane materials in fuel cells. 

Journal of Power Sources, 512, 

230479. 

[82] Kim, H., Nguyen, T., & Li, Z. 

(2022). Reinforcement learning in 

the optimization of scalable 

fabrication processes for fuel cell 

membranes. AIChE Journal, 

68(7), e17736. 

[83] Garcia, M., Smith, D., & Patel, A. 

(2023). Application of Gaussian 

processes for predicting energy 

use and environmental impact in 

membrane manufacturing. 

Journal of Cleaner Production, 

385, 135764. 

[84] Zhang, Y., Liu, X., & Wang, T. 

(2022). Application of random 

forest models in virtual screening 

of polymer membranes for fuel 

cells. Journal of Materials 

Chemistry A, 10(32), 18765–

18774. 

[85] Li, F., Qiu, J., & Zhang, Z. (2021). 

Generative adversarial networks 

for the inverse design of polymer 

electrolyte membranes. Nature 

Machine Intelligence, 3(7), 536–

546. 



40  Mohamed Mahmoud Nasef & Mohamed Hadi Habaebi 

[86] Chen, H., Kim, M., & Patel, R. 

(2023). Machine learning-based 

virtual screening for high-

conductivity polymer electrolytes 

in fuel cells. Advanced Functional 

Materials, 33(5), 2209243. 

[87] Bradford, G., Lopez, J., Ruza, J., 

Stolberg, M. A., Osterude, R., 

Johnson, J. A., Gomez-

Bombarelli, R., & Shao-Horn, Y. 

(2023). Chemistry-informed 

machine learning for polymer 

electrolyte discovery. ACS 

Central Science, 9(2), 206–216. 

[88] Zhang, L., Yang, F., & Wang, Q. 

(2020). Machine learning 

approaches for polymer 

electrolyte development. 

Advanced Energy Materials, 

10(15), 1903242. 

[89] Patel, M., & Johnson, R. (2019). 

Integrating chemistry and AI for 

better materials. Nature Materials, 

18(7), 706–716. 

[90] Green, A., Jones, T., & Lee, S. 

(2022). Data-driven polymer 

design using machine learning. 

Energy & Environmental Science, 

15(3), 558–570. 

[91] Smith, J., Brown, K., & Li, Y. 

(2021). Chemistry-informed 

machine learning for materials 

discovery. Journal of Materials 

Science, 56(4), 2302–2318. 

[92] Smith, J., Li, Y., & Chen, W. 

(2020). Machine learning for 

process optimization in polymer 

electrolyte membrane production. 

Journal of Manufacturing 

Processes, 49, 56–64. 

[93] Patel, R., & Brown, T. (2021). 

Improving membrane 

manufacturing using support 

vector machines: A case study in 

PEMFCs. Journal of Power 

Sources, 512, 230–238. 

[94] Zhang, L., Yang, X., & Wang, R. 

(2019). Data-driven approaches 

for membrane fabrication 

optimization. Journal of 

Membrane Science, 570, 46–55. 

[95] Green, A., Jones, T., & Lee, M. 

(2022). Bayesian optimization for 

polymer processing in energy 

applications. Advanced Materials, 

34(4), 2200523. 

[96] Johnson, K., Singh, P., & Yoon, S. 

(2021). Real-time monitoring of 

membrane manufacturing using 

machine learning. AIChE Journal, 

67(11), e17326. 

[97] Lee, H., Kim, J., & Park, S. 

(2020). Predictive maintenance in 

membrane production using AI 

techniques. Industrial & 

Engineering Chemistry Research, 

59(36), 16123–16132. 

 
 

 

 

 

 


