Opinions on the Development of Ultrahigh Permeation Membranes

Takeshi Matsuura*

Department of Chemical and Biological Engineering, University of Ottawa 161 Louis Pasteur, Ottawa, Ont. K1N 6N5 Canada

Submitted: 11/12/2023. Revised edition: 12/12/2023. Accepted: 12/12/2023. Available online: 28/3/2024

ABSTRACT

In this work, recent progresses made in the development of membranes with ultrahigh permeation rate for reverse osmosis (RO) and membrane distillation (MD) are briefly summarized and the future prospect of those membranes is discussed. In fabrication of ultrahigh permeation RO membranes, carbon nanotube, aquaporin, graphene and fluorous oligoamide nanorings were used and in all of them several orders of magnitude higher fluxes than the conventional commercial membranes were achieved. Ultrahigh MD membranes were fabricated mostly from carbonaceous materials also with several orders of magnitude higher fluxes than conventional commercial membranes, except for those made of ultrathin polymeric material, which demonstrated a high flux at a low transmembrane temperature difference. Despite these remarkable achievements, it was concluded that many challenges would be encountered to produce a sufficient amount of water by the so-called membrane chips.

Keywords: Ultrahigh permeation membranes, Reverse osmosis, Membrane distillation, Membrane chips, Future prospect

1.0 RO MEMBRANES

The first commercial RO membrane was developed by Loeb and Sourirajan using cellulose acetate as the membrane material in nineteen sixties. Later in nineteen seventies, Cadotte developed composite polyamide thin film membranes based on interfacial polymerization these and now membranes are dominant in the commercial market. However, since the fluxes of the membranes are limited for polymeric materials due to the fluxselectivity trade-off rule, attempts have been made to increase the flux of RO membranes by orders of magnitude using non-polymeric materials.

1.1 Membranes based on Carbon Nanotube

Hummer *et al.* [1] and Kalra *et al.* [2] made molecular dynamics simulations

(MDS) of water transport in singlewalled carbon nanotubes (SWCNTs) in 2001 and 2003, respectively. The simulation predicted permeation rate of 5.8 water molecules per ns per CNT [2]. Inspired by these results, Holt et al. in 2006 made micro-fabricated membranes to show that the water permeation rate was 3 orders magnitude higher than the value predicted by the Hagen-Poiseuille equation [3]. The measurement of water flow rate through CNT was also made via the stopped-flow technique by Li et al. in 2020 [4]. The obtained flow rate was slightly higher than Tunuguntla et *al.*'s data [5].

Since the Science paper of Holt *et al.* was published, many attempts have been made to fabricate industrially viable carbon CNT-based membranes [3]. Because of difficulty to make membranes of large sizes employing CNTs alone, those attempts were made by the development of nanocomposite (TNC) membranes, in which carbon nanotubes (CNTs) were embedded in aromatic polyamide thin-film composite (TFC) membranes.

Examples are the works of Cruz-Silva et al. [6], Lee et al. [7], Kim et al. [8], Zhang et al. [9], Inukai et al. [10], Kim et al. [11] and Zhao et al. [12]. All of them have reported improvement of RO membrane performance, in terms of durability, antifouling capacity, flux and mechanical strength. For example, Inukai et al. [10] reported that the flux could almost doubled be bv incorporating MWCNTs in polyamide maintaining membrane while selectivity for NaCl. The more recent development of **CNT-related** membranes is summarized in the review paper of Kumar et al. [13].

1.2 Biomimetic Membrane

MDS revealed that the water permeability through an aquaporin pore is 10^8 - 10^9 water molecules/s [14]. The water permeability of aquaporin was then measured by the stop-flow method by Hovijitra et al., resulting in good agreement with MDS [15]. Kumar et al. [16] and Tang et al. [17] postulated that AqpZ-based biomimetic membranes can potentially achieve a water permeability as high as 601 L/m².h.bar (or LMH/bar), which is 2 orders of magnitude higher than the currently available commercial membranes. al. [18] fabricated Zhao *et* an aquaporin-based biomimetic membrane via the interfacial polymerization method. The membrane with an area 200 cm^2 had good greater than mechanical stability and the performance was better than commercially available membranes. A typical example of experimental data obtained by a laboratory made membrane is water permeability (~4 LMH/bar) with comparable NaCl rejection ($\sim 97\%$) at an applied pressure of 5bar. Its permeability was ~40% higher compared to a commercial brackish water RO membrane (BW30) and an order of magnitude higher compared to a seawater RO membrane (SW30HR). Li et al. [19] also fabricated aquaporin incorporated TFC membrane. The membrane exhibited a stable water flux around 20 LMH and 99% NaCl rejection at a constant pressure of 55 bar using 32,000 mg/L NaCl solution. The flux was 80 % higher than the commercial SW30RT membrane. A Danish company known as Aquaporin is manufacturing flat sheet and hollow fiber membranes for RO and forward osmosis (FO) based on their technology called Aquaporin Inside [20].

1.3 Membranes based on Graphene and Graphene Oxide

Cohen-Tanugi and Grossman made a MDS of the water and NaCl transport through nanopores of graphene [21] and showed that graphene membrane allows the permeability of as high as 2000 LMH/bar with perfect NaCl rejection, which is several orders of magnitude higher than the conventional RO membrane. Membranes with а graphene domain of 5 µm diameter were then fabricated by oxygen plasma etching of graphene grown by chemical vapor deposition [22]. The membrane with the lowest defect exhibited 100% salt rejection with very high fluxes at both RO and FO conditions. The area of single-layer graphene was increased to cm-scale by O'Hern et al. [23]. The membrane demonstrated nanofiltration (NF) capacity when the experiments were conducted by FO.

According to the latest news [24], Clean TeQ Water (ASX:CNQ) subsidiary, NematiQ, is now able to fabricate 1000 m of 1000 mm wide flat sheet graphene membrane by roll-toroll coating. The membrane is called nanofiltration membrane but seems more like ultrafiltration membrane. Akbari et al. [25] cast liquid crystals of graphene oxide (GO) on a nylon sheet using a casting blade. The membrane area was as large as $13 \times 14 \text{ cm}^2$. The membranes showed nanofiltration performance with flux 10 times as large as commercial NF 270 membrane. Zhang et al. [26] exfoliated GO nanosheet by sonication, which was then functionalized by sulfonation and mild reduction. The membrane also showed nanofiltration capacity.

1.4 Membranes based on Fluorous Oligoamide Nanorings (^{Fm}NR_ns)

Itoh *et al.* [27] synthesized a series of fluorous oligoamide nanorings that underwent supramolecular polymerization in phospholipid bilayer membranes to yield nanochannels with different interior diameters and the interior walls which are densely covered with fluorine atoms. The water permeation rate was also calculated by MDS and experimentally determined by the stopped-flow fluorescence method. Flow rate per channel was said to be higher than those of aquaporin and carbon nanotube.

2.0 MEMBRANE DISTILLATION (MD) MEMBRANE

Recently a number of papers have been published on the ultrahigh flux MD membranes. Most of them were made of carbonaceous materials such as carbon nanotubes, graphene and graphene oxide. Examples are the reports of Chen *et al.* [28] on a layer of porous carbon structures, Gon *et al.* [29] on graphene composite membrane, Sun *et al.* [30] on carbon nanotube network membrane, Lu *et al.* [31] on nanoporous graphene membrane and Chen *et al.* [32] on GO nanosheet. All of them were with vacuum membrane distillation (VMD), except for Lu *et al.* [31] who worked with direct contact membrane distillation (DCMD).

Most recently, Chen *et al.* [33] prepared the submicrometer-thick and nanopore-structured graphdiyne membranes on porous Cu hollow fbres. They claimed that their membranes were better than graphitic membranes that had been fabricated before them.They also reported ultrahigh DCMD flux. It should be noted that all of these membranes are made of carboneceous materials with nano-sized pores to take advantage of slippery pore wall, but the sizes are too large for RO membranes.

On the other hand, Qtaishat *et al.* [34] reported ultrahigh flux membranes for DCMD using non-carbonaceous materials. According to their method, a thin layer formed by the reaction of 1H,1H,2H,2H

perfluorododecyltrichlorosilane (FTCS) and m-phenylenediamine was transferred to an anodic substrate. Due to the enhanced vapor pressure of water in nanosized capillaries, the membrane showed a high water flux (ca 40 LMH) even when the feed and permeate temperaute were 25 and 20°C, respectively.

3.0 OPINIONS

The development of ultrahigh flux membranes for RO and MD is summarized in Table 1.

RO Carbon nanotube Hummer et al. 2001,2003 MDS, water transport in SWCNTs [1,2] and Kalra et al. 2006 Experiments with double-walled carbon nanotubes (DWCNTs) of sub-2-nm [3] Li et al. 2020 Experiments with stopped-flow technique [4] Cruz-Silva et al. 2016 Chlorine resistant nanocomposite membranes with MWCNTs [6] Le et al. 2011 Review article on CNTs embedded in TFC membranes [8] Kim et al. 2011 Acidified CNTs embedded in TFC membrane [9] TFC membrane [10] MWCNTs in TFC membrane [11] Invalid et al. 2015 Anionic surfactant stabilized more for arbon nanotubes and graphene oxides [11] Kim et al. 2014 MWCNTs incorporated in polyamide RO membrane [12] Kim et al. 2015 Nanocomposite membranes containing the mixture of carbon nanotubes and graphene oxides [13] Zhao et al. 2014 MWCNTs incorporated in polyamide RO membrane [13] Biomimetic membrane permeation in aquaporin [14] Mouritsen performed on water permeability measured by all augorin based biomimetic membranes for desalination				
Carbon nanotube Hummer et al. 2001,2003 MDS, water transport in SWCNTs [1,2] and Kalra et al. 2006 Experiments with double-walled carbon nanotubes (DWCNTs) of sub-2-mm [3] Li et al. 2020 Experiments with stopped-flow technique [6] Cruz-Silva et al. 2016 Chlorine resistant nanocomposite membranes with MWCNTs [6] Lee et al. 2011 Review article on CNTs embedded in TFC membrane [8] Kim et al. 2011 Acidified CNTs embedded in TFC membrane [8] Zhang et al. 2011 Acidified MWCNTs embedded in TFC membrane [10] Kim et al. 2015 Anionic surfactant stabilized MWCNTs in TFC membrane [10] Kim et al. 2015 Nanocomposite membranes containing the mixture of carbon nanotubes and graphene oxides [11] Zhao et al. 2014 Review on nanocomposite [13] [13] Biomimetic membrane membrane [14] Jensen and 2006 MDS performed on water [14] Mouritsen permeation in aquaporin [16] Houritsen permeation in aquaporin [16] Jensen and 2007, Predicti				
Hummer et al. and Kalra et al.2001,2003MDS, water transport in SWCNTs[1,2]Holt et al.2006Experiments with double-walled carbon nanotubes (DWCNTs) of sub-2- nm[3]Li et al.2020Experiments with stopped-flow technique[4]Cruz-Silva et al.2016Chlorine resistant nanocomposite membranes with MWCNTs[6]Le et al.2011Review article on CNTs embedded membranes[7]Le et al.2014Acidified CNTs embedded in TFC membrane[8]Zhang et al.2015Anionic surfactant membrane[10]Inukai et al2015Nanocomposite membrane[11]Kim et al.2015Nanocomposite membrane[11]Kim et al.2015Nanocomposite membrane[11]Kim et al.2016Review on nanotomes and graphene oxides[12]Zhao et al.2020Review on nanocomposite membrane[13]Biomimetic membrane2006MDS performed on water permeation in aquaporin[14]Hovijitra et al.2007, stop-flow methodPrediction of high water permeation permeation of aquaporin[16,17]Kumar et al.2007, stop-flow methodPrediction of high water permeation membranes and the future prospects[16]Jensen and Jonsen2007, stop-flow methodPrediction of aquaporin[16]Kumar et al.2012Fabrication of aquaporin[16]				
and Kalra et al. 2006 Experiments with double-walled carbon nanotubes (DWCNTs) of sub-2-nm [3] Li et al. 2020 Experiments with stopped-flow technique [4] Cruz-Silva et al. 2016 Chlorine resistant nanocomposite membranes with MWCNTs [6] al. 2011 Review article on CNTs embedded in TFC membranes [7] Kim et al. 2014 Acidified MWCNTs embedded in TFC membrane [8] Zhang et al. 2015 Anionic surfactant stabilized MWCNTs embedded in TFC membrane [10] Inukai et al 2015 Nanocomposite membranes containing the mixture of carbon nanotubes and graphene oxides [11] Zhao et al. 2014 MWCNTs in corporated in polyamide RO membrane [12] Jensen and 2006 MDS performed on water permeation in aquaporin [14] Hovijitra et al. 2007, and Tang et al. 2007, Prediction of high water permeation fin aquaporin [16]				
Holt et al.2006Experiments with double-walled carbon nanotubes (DWCNTs) of sub-2- nm[3]Li et al.2020Experiments with stopped-flow technique[4]Cruz-Silva et al.2016Chlorine resistant nanocomposite membranes with MWCNTs[6]Lee et al.2011Review article on CNTs embedded membranes[7]Lee et al.2014Acidified CNTs embedded in TFC membrane[8]Zhang et al.2011Acidified MWCNTs embedded in TFC membrane[9]Inukai et al2015Anionic surfactant stabilized[10]Kim et al.2015Nanocomposite membrane[11]Kim et al.2015Nanocomposite nanotubes and graphene oxides[12]Zhao et al.2014MWCNTs permeation in aquaporin[13]Biomimetic membraneImembranes permeation in aquaporin[14]Hovijitra et al.2009Water permeability measured by stop-flow method[16,17]Kumar et al.2007, and Tang et al.2012Fabrication of aquaporin[16]				
Li et al. 2020 Experiments with stopped-flow technique [4] Cruz-Silva et 2016 Chlorine resistant nanocomposite al. [6] al. 2011 Review article on CNTs embedded in TFC membranes [7] Lie et al. 2011 Review article on CNTs embedded in TFC membranes [8] Kim et al. 2011 Acidified CNTs embedded in TFC membrane [9] Zhang et al. 2011 Acidified MWCNTs embedded in TFC membrane [10] Inukai et al 2015 Anionic surfactant stabilized for another stabilized mWCNTs in TFC membrane [10] Kim et al. 2015 Nanocomposite membranes containing the mixture of carbon nanotubes and graphene oxides [11] Zhao et al. 2014 MWCNTs incorporated in polyamide RO membrane [12] Biomimetic membrane membranes for desalination [13] Biomimetic membrane geneen and 2006 MDS performed on water meters of desalination [14] Hovijitra et al. 2007, and Tang et al. 2007, Prediction of high water permeation in aquaporin [16,17] Atumar et al. 2012 Fabrication of aquaporin [18]				
Li et al.2020Experiments with stopped-flow technique[4]Cruz-Silva et al.2016Chlorine resistant nanocomposite membranes with MWCNTs[6]Lee et al.2011Review article on CNTs embedded membranes[7]Kim et al.2014Acidified CNTs embedded in TFC membrane[8]Zhang et al.2011Acidified MWCNTs embedded in TFC membrane[9]Inukai et al2015Anionic surfactant stabilized membrane[10]Kim et al.2015Nanocomposite membrane[11]Kim et al.2015Nanocomposite membrane[11]Kim et al.2014MWCNTs in TFC membrane[11]Kim et al.2014Nanocomposite membrane[11]Kim et al.2010Review on nanocomposite membrane[12]Jaao et al.2014MWCNTs membrane[13]Biomimetic membrane2000Review on nanocomposite membrane[14]Mouritsen2006MDS performed on water permeation in aquaporin[15]Hovijitra et al.2007, 2013Prediction of high water permeation by aquaporin based biomimetic membranes and the future prospects[16,17]				
Li et al.2020Experiments with stopped-flow technique[4]Cruz-Silva et2016Chlorine resistant nanocomposite membranes with MWCNTs[6]al.2011Review article on CNTs embedded membranes[7]Lee et al.2014Acidified CNTs embedded in TFC membrane[8]Kim et al.2011Acidified MWCNTs embedded in TFC membrane[9]Zhang et al.2011Acidified MWCNTs embedded in TFC membrane[10]Inukai et al2015Anionic surfactant stabilized membrane[10]Kim et al.2015Nanocomposite containing the mixture of carbon nanotubes and graphene oxides[11]Kumar et al.2020Review on nanocomposite membrane[13]Biomimetic membrane2006MDS performed on water permeation in aquaporin[14]Hovijitra et al.2007, 2013Prediction of high water permeation by aquaporin based biomimetic membranes and the future prospects[16,17]				
cruz-Silva et2016Chlorine resistant nanocomposite membranes with MWCNTs[6]Lee et al.2011Review article on CNTs embedded membranes[7]Kim et al.2014Acidified CNTs embedded in TFC membrane[8]Zhang et al.2011Acidified MWCNTs embedded in TFC membrane[9]Inukai et al2015Anionic MWCNTs in TFC membrane[10]Kim et al.2015Nanocomposite membrane[11]Zhao et al.2014MWCNTs in composite membrane[11]Kim et al.2015Nanocomposite membrane[11]Kim et al.2014MWCNTs incorporated membrane[12]Zhao et al.2014MWCNTs membrane[13]Biomimetic membraneIn polyamide RO membrane[13]Hovijitra et al.2009MDS performed on water method[14]Mouritsen2009Water permeability measured by stop-flow method[15]Al.2013by aquaporin based biomimetic membranes and the future prospects[16,17]Zhao et al.2012Fabrication of aquaporin[18]				
Cruz-Silva et al.2016Chlorine resistant nanocomposite membranes with MWCNTs[6]Lee et al.2011Review article on CNTs embedded membranes[7]Kim et al.2014Acidified CNTs embedded in TFC membrane[8]Zhang et al.2011Acidified MWCNTs embedded in TFC membrane[9]Inukai et al2015Anionic surfactant stabilized MWCNTs in TFC membrane[10]Kim et al.2015Nanocomposite nanotubes and graphene oxides[11]Zhao et al.2014MWCNTs membrane[12]Jensen and Mouritsen2006Review on nanocomposite membranes for desalination[13]Biomimetic membrane2006MDS performed on water permeation in aquaporin[14]Mouritsen2007, stop-flow methodFrediction of high water permeation polyaporin based biomimetic membranes and the future prospects[16,17]Atumar et al.2007, stop-flow methodFrediction of aquaporin[16,17]				
al. membranes with MWCNTs Lee et al. 2011 Review article on CNTs embedded membranes [7] Kim et al. 2014 Acidified CNTs embedded in TFC membrane [8] Zhang et al. 2011 Acidified MWCNTs embedded in TFC membrane [9] Inukai et al 2015 Anionic surfactant stabilized MWCNTs in TFC membrane [10] Kim et al. 2015 Nanocomposite membranes containing the mixture of carbon nanotubes and graphene oxides [11] Zhao et al. 2014 MWCNTs incorporated in polyamide RO membrane [12] Kumar et al. 2020 Review on nanocomposite membranes for desalination [13] Biomimetic membrane 2006 MDS performed on water permeation in aquaporin [14] Mouritsen 2009 Water permeability measured by stop-flow method [15] al. 2017, and Tang et al. 2017, 2013 Prediction of high water permeation by aquaporin based biomimetic membranes and the future prospects [16,17]				
Lee et al.2011Review article on CNTs embedded membranes[7]Kim et al.2014Acidified CNTs embedded in TFC membrane[8]Zhang et al.2011Acidified MWCNTs embedded in TFC membrane[9]Inukai et al2015Anionic MWCNTs in TFC membrane[10]Kim et al.2015Nanocomposite membrane[11]Kim et al.2014MWCNTs in TFC membrane[11]Zhao et al.2014MWCNTs incorporated in polyamide RO membrane[12]Kumar et al.2020Review on nanocomposite membranes for desalination[13]Biomimetic membraneI13][14]Mouritsen2006MDS performed on water permeation in aquaporin[14]Hovijitra et al.2007, 2013Prediction of high water permeation by aquaporin based biomimetic membranes and the future prospects[16,17]Zhao et al.2012Fabrication[18]				
Kim et al.2014Acidified CNTs embedded in TFC membrane[8]Zhang et al.2011Acidified MWCNTs embedded in TFC membrane[9]Inukai et al2015Anionic MWCNTs in TFC membrane[10]Kim et al.2015Nanocomposite nanotubes and graphene oxides[11]Zhao et al.2014MWCNTs MWCNTs[12]Kumar et al.2020Review on nanotubes for desalination[13]Biomimetic membrane[13][14]Mouritsenperformed on water permeation in aquaporin[14]Hovijitra al.2007, 				
Kim et al.2014Acidified CNTs embedded in TFC membrane[8]Zhang et al.2011Acidified MWCNTs embedded in TFC membrane[9]Inukai et al2015Anionic surfactant stabilized MWCNTs in TFC membrane[10]Kim et al.2015Nanocomposite nanotubes and graphene oxides[11]Zhao et al.2014MWCNTs incorporated in polyamide RO membrane[12]Kumar et al.2020Review on membranes for desalination[13]Biomimetic membraneIn permeation in aquaporin[14]Hovijitra et al.2007, 2013Prediction of high water permeation by aquaporin based biomimetic membranes and the future prospects[16,17]Zhao et al.2012Fabrication[18]				
Zhang et al.2011Acidified MWCNTs embedded in TFC membrane[9]Inukai et al2015Anionic surfactant stabilized MWCNTs in TFC membrane[10]Kim et al.2015Nanocomposite containing the mixture of carbon nanotubes and graphene oxides[11]Zhao et al.2014MWCNTs membrane[12]Kumar et al.2020Review on membranes for desalination[13]Biomimetic membrane[14]membrane[14]Mouritsen2006MDS performed on water permeation in aquaporin[15]Hovijitra et al.2007, 2013Prediction of high water permeation by aquaporin based biomimetic membranes and the future prospects[16,17]Kumar et al.2012Fabrication of aquaporin[18]				
Zhang et al.2011Acidified MWCNTs embedded in TFC membrane[9]Inukai et al2015Anionicsurfactantstabilized MWCNTs in TFC membrane[10]Kim et al.2015Nanocomposite containing the mixture of carbon nanotubes and graphene oxides[11]Zhao et al.2014MWCNTs membrane[12]Kumar et al.2020Review on membranes for desalination[13]Biomimetic membraneImage: stop-flow method stop-flow method[14]Mouritsen2006MDS performed on water permeation in aquaporin[15]Hovijitra et al.2007, stop-flow method[16,17]Aumar et al.2007, stop-flow method[16,17]Aumar et al.2007, stop-flow method[16,17]Aumar et al.2012Fabrication of aquaporin[18]				
TFC membraneInukai et al2015Anionic surfactant stabilized MWCNTs in TFC membrane[10]Kim et al.2015Nanocomposite containing the mixture of carbon nanotubes and graphene oxides[11]Zhao et al.2014MWCNTs polyamide RO membrane[12]Kumar et al.2020Review on nanocomposite membranes for desalination[13]Biomimetic membraneMDS performed on water permeation in aquaporin[14]Mouritsen2009Water permeability measured by stop-flow method[15]Alumar et al.2007, 2013Prediction of high water permeation by aquaporin based biomimetic membranes and the future prospects[16,17]Zhao et al.2012Fabrication[18]				
Inukai et al2015Anionicsurfactantstabilized[10]Kim et al.2015Nanocompositemembranes[11]Kim et al.2015Nanocompositemembranes[11]Zhao et al.2014MWCNTsincorporatedin[12]Zhao et al.2010Review on nanocomposite[13][13]Biomimetic membranemembranes[14][14]Mouritsenperformed on water[14]Hovijitra et2009Water permeability measured by stop-flow method[15]Al.2007,Prediction of high water permeation by aquaporin based biomimetic membranes and the future prospects[16,17]Zhao et al.2012Fabrication[18]				
Kim et al.2015Nanocomposite nanotubes and graphene oxides[11]Zhao et al.2014MWCNTs nanotubes and graphene oxides[11]Zhao et al.2014MWCNTs polyamide RO membrane[12]Kumar et al.2020Review on nanocomposite membranes for desalination[13]Biomimetic membrane[14]Jensen and Mouritsen2006MDS performed on water permeation in aquaporin[14]Hovijitra et al.2009Water permeability measured by stop-flow method[15]Kumar et al. 20132007, by aquaporin based biomimetic membranes and the future prospects[16,17]Zhao et al.2012Fabrication of aquaporin[18]				
Kim et al.2015Nanocomposite containing the mixture of carbon nanotubes and graphene oxides[11]Zhao et al.2014MWCNTs polyamide RO membrane[12]Kumar et al.2020Review on nanocomposite membranes for desalination[13]Biomimetic membraneJensen and polyamide ROMDS performed on water permeation in aquaporin[14]Mouritsen2009Water permeability measured by stop-flow method[15]Kumar et al.2007, prediction of high water permeation by aquaporin based biomimetic membranes and the future prospects[16,17]Zhao et al.2012Fabrication[18]				
Containing the mixture of carbon nanotubes and graphene oxidesImage: Containing the mixture of carbon nanotubes and graphene oxidesZhao et al.2014MWCNTs incorporated in polyamide RO membrane[12]Kumar et al.2020Review on nanocomposite membranes for desalination[13]Biomimetic membraneImage: Containing the mixture of carbon polyamide RO membrane[13]Biomimetic membraneImage: Containing the mixture of carbon polyamide RO membrane[13]Biomimetic membraneImage: Containing the mixture of carbon membranes for desalination[14]MouritsenImage: Containing the membrane[14]MouritsenImage: Containing the membrane[15]Image: Al.2009Water permeability measured by stop-flow method[15]Kumar et al.2007, 2013Prediction of high water permeation by aquaporin based biomimetic membranes and the future prospects[16,17]Zhao et al.2012Fabrication Fabrication[18]				
Zhao et al.2014MWCNTsincorporatedin[12]MWCNTsincorporatedin[12]in[12]Mumar et al.2020Review on nanocomposite[13]Biomimetic membranemembranes for desalination[13]Biomimetic membraneMDSperformed on water[14]Mouritsenpermeation in aquaporin[14]Hovijitra et2009Water permeability measured by[15]al.stop-flow method[16,17]Kumar et al.2007,Prediction of high water permeation[16,17]and Tang et al.2013by aquaporinbasedbiomimeticZhao et al.2012Fabricationof aquaporin[18]				
Zhao et al.2014MWCNTs polyamide RO membraneincorporatedin[12]Kumar et al.2020Review on nanocomposite membranes for desalination[13]Biomimetic membrane[13]Jensen and Mouritsen2006MDS performed on water permeation in aquaporin[14]Hovijitra et al.2009Water permeability measured by stop-flow method[15]Kumar et al. and Tang et al.2007, 2013Prediction of high water permeation by aquaporin based biomimetic membranes and the future prospects[16,17]Zhao et al.2012Fabricationof aquaporin[18]				
Kumar et al.2020Review on nanocomposite membranes for desalination[13]Biomimetic membraneImage: State of the stat				
Kumar et al.2020Review on nanocomposite membranes for desalination[13]Biomimetic membraneImage: State of the stat				
Biomimetic membranemembranes for desalinationJensen and Jensen and Nouritsen2006MDS performed on water permeation in aquaporin[14]Hovijitra et al.2009Water permeability measured by stop-flow method[15]Kumar et al. and Tang et al.2007, 2013Prediction of high water permeation by aquaporin based biomimetic membranes and the future prospects[16,17]Zhao et al.2012Fabrication of aquaporin[18]				
Biomimetic membraneJensen and2006MDS performed on water[14]Mouritsenpermeation in aquaporin[14]Hovijitra et2009Water permeability measured by[15]al.stop-flow method[15]Kumar et al.2007,Prediction of high water permeation[16,17]and Tang et al.2013by aquaporin based biomimetic[16,17]Zhao et al.2012Fabrication of aquaporin[18]				
Jensen and Mouritsen2006MDS performed on water permeation in aquaporin[14]Hovijitraet2009Water permeability measured by stop-flow method[15]al.2007, stop-flow methodPrediction of high water permeation by aquaporin based biomimetic membranes and the future prospects[16,17]Zhao et al.2012Fabrication of aquaporin[18]				
Mouritsenpermeation in aquaporinHovijitra et2009Water permeability measured by stop-flow method[15]al.2007,Prediction of high water permeation by aquaporin based biomimetic membranes and the future prospects[16,17]Zhao et al.2012Fabrication of aquaporin[18]				
Hovijitraet2009Water permeability measured by stop-flow method[15]al.2007,Prediction of high water permeation by aquaporin based biomimetic membranes and the future prospects[16,17]Zhao et al.2012Fabrication of aquaporin[18]				
al.stop-flow method[16,17]Kumar et al.2007,Prediction of high water permeation[16,17]and Tang et al.2013by aquaporin based biomimetic membranes and the future prospects[16,17]Zhao et al.2012Fabrication of aquaporin[18]				
Kumar et al.2007,Prediction of high water permeation[16,17]and Tang et al.2013by aquaporin based biomimetic membranes and the future prospects[16,17]Zhao et al.2012Fabrication of aquaporin[18]				
and Tang et al.2013by aquaporin based biomimetic membranes and the future prospectsZhao et al.2012Fabrication of aquaporin				
membranes and the future prospects Zhao et al. 2012 Fabrication of aquaporin [18]				
Zhao et al.2012Fabricationofaquaporin[18]				
incorporated TFC membranes				
Li et al. 2019 Fabrication of aquaporin [19]				
incorporated TFC membranes				
2022 Information on commercial [20]				
Aquaporin Inside				
Graphene and graphene oxide				
Cohen- 2012 MDS on water and salt transport [21]				
Tanugi and through graphene				
Grossman				
Surwade <i>et al.</i> 2015 RO experiments with graphene size [22]				
of 5 µm				
O'Hern <i>et al.</i> 2015 Membrane size is increased to cm- [23]				
size				
2022 News on commercial scale graphene [24]				
membrane				

 Table 1 Summary of the development of ultrahigh flux membranes

Akbari <i>et al</i> .	2016	Graphene oxide (GO) membrane for NF	[25]	
Zhang <i>et al</i> .	2016	GO nanosheet sulfonated and reduced for NF	[26]	
Fluorous oligoamide nanorings				
Itoh <i>et al</i> .	2022	MDS and stop-flow experiment for water permeation	[27]	
Membrane distillation				
Carbonaceous r	naterials			
Chen <i>et al</i> .	2018	Report on MD by a layer of porous	[28]	
	2021		[20]	
Gong et al.	2021	2D nanochannels	[29]	
Sun <i>et al</i> .	2022	Carbon nanotube network membranes	[30]	
Lu <i>et al</i> .	2022	Nanoporous graphene membrane	[31]	
Chen <i>et al</i> .	2021	Graphene oxide nanosheet	[32]	
Chen <i>et al</i> .	2023	Fabrication of graphdiyne	[33]	
Non-carbonaceous materials				
Qtaishat <i>et al</i> .	2022	Thin layer of FTCS polymerized with MPDE with high flux at low temperature	[34]	

3.1 RO Membranes

A common pattern is found in the development of ultrahigh flux RO membranes. All of them, except for fluorous oligoamide nanorings, begin with the discovery of the material by Nobel laureates. Then, the development is made by the following steps.

- 1) MDS of water transport is performed.
- 2) Water flow rate measurement through the nano-sized cylinder via the stopped-flow method.
- 3) Miniature-sized membrane is made and ultrahigh flow rate is confirmed.
- 4) Membranes of the cm-sized area are fabricated for filtration experiments.
- 5) Upon achieving successful results in 4), a module is constructed for the pilot scale experiments.

6) The membrane is commercialized.Among those the results from step 1) to3) are reported in high impact factor journals.

Even though there are some exceptions in sequence, the above steps are followed in most cases. Until now, only aquaporin and graphene reached Step 5. Aquaporin membrane has reached even step 6 but its application is mainly for FO. Considering the 17 years that have passed since the announcement of the CNT-based membrane in 2006, the progress is very slow.

Giwaa *et al.* [35] commented on the following challenges for the development of large-scale aquaporin membranes, which seem applicable to all other ultra-high flux membranes.

- 1) Production of a large quantity of aquaporin
- 2) Long-term stability of the aquaporin membrane
- 3) Good compatibility between aquaporin and the host membrane
- 4) Chemical cleaning of the membrane

In addition, there may be some other challenges such as,

- 1) Vertical alignment of nano-sized cylinders in the membrane
- 2) Reproducibility of filtration performance
- 3) Environmental issue of the release of nanoparticles into drinking water, even a very small amount

Hence, there are many risks to be taken into account, before ultra-high flux membranes enter into the commercial market.

1.3 MD Membranes

All of the works on MD membranes of ultrahigh flux were done with laboratory-scale filtration experiments. Therefore, the filtration data seem more realistic to be used for the fabrication of industrial scale membranes. However, growth of carbonaceous layer on a substrate is challenging. Besides, very high thermal conductivity of carbonaceous materials (few thousand W/m.K as compared to 0.1 to 0.3 W/m.K of polymeric material) will cause high conduction heat loss. To prevent the heat loss, VMD is applicable, which however is not necessarily an economical MD process. Moreover, even when the flux is very high, the process requires the supply of sensible and latent heat to produce a given amount of produced water and its recovery will be an issue, anyway. For the membrane operable at a low feed temperature, the recovery of the latent heat will also remain an issue.

Moreover, the membrane pore wetting has to be overcome before large scale MD application for seawater desalination becomes commercially successful. Thus, it looks extremely challenging to achieve such a dream as to produce a large amount of water by a membrane chip.

CONFLICTS OF INTEREST

The authors declare that there is no conflict of interest regarding the publication of this paper.

ACKNOWLEDGEMENT

Dr. Dipak Rana's suggestion to collect information on this topic is greatly appreciated.

REFERENCES

- Hummer, G., J. C. Rasaiah, and J. P. Noworyta. (2001). Water conduction through the hydrophobic channel of a carbon nanotube. *Nature*, 414, 188-190.
- [2] Kalra, A., S. Garde, and G. Hummer. (2003). Osmotic water transport through carbon nanotube membranes. *Proc. Natl. Acad. Sci. U.S.A.*, 100, 10175-10180.
- [3] Holt, J. K., H.,G. Park, Y. Wang, M. Stadermann, A.,B. Artyukhin, C.,P. Grigoropoulos, A. Noy, and O. Bakajin. (2006). Fast mass transport through sub-2nanometer carbon nanotubes. *Science*, *312*, 1034-1037.
- [4] Li, Y., Z. Li, F. Aydin, J. Quan, X. Chen, Y.-C. Yao, C. Zhan, Y. Chen, T. A. Pham, and A. Noy. (2020). Water-ion permselectivity of narrowdiameter carbon nanotubes. *Sci. Adv.*, *6*, eaba9966.
- [5] Tunuguntla, R., R. Y. Henley, Y.-C. Yao, T. A. Pham, M. Wanunu, and A. Noy. (2017). Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube. *Science*, 25, 792-796.
- [6] Cruz-Silva, R., S. Inukai, T. Araki, A. Morelos-Gomez, J.

Ortiz-Medina, K. Takeuchi, T. Hayashi, A. Tanioka, S. Tejima, T. Noguchi, M. Terrones, and M. Endo. (2016). High performance and chlorine resistant carbon nanotube/aromatic polyamide reverse osmosis nanocomposite membrane. *MRS Adv., 1*, 1469-1476.

- [7] Lee, K. P., T. C. Arnot, and D. Mattia. (2011). A review of reverse osmosis membrane materials for desalination development to date and future potential. J. Membr. Sci., 370, 1-22.
- [8] Kim, H. J., K. Choi, Y. Baek, D.-G. Kim, J. Shim, J. Yoon, and J.-C. Lee. (2014). High-Performance reverse osmosis CNT/polyamide nanocomposite membrane by controlled interfacial interactions. ACS Appl. Mater. Interfaces, 6, 2819-2829.
- [9] Zhang, L., G.-Z. Shi, S. Qiu, L.-H. Cheng, and H.-L. Chen. (2011). Preparation of high-flux thin film nanocomposite reverse osmosis membranes by incorporating functionalized multi-walled carbon nanotubes. *Desalin. Water Treat.*, 34, 19-24.
- [10] Inukai, S., R. Cruz-Silva, J. Ortiz-Medina, A. Morelos-Gomez, K. Takeuchi, T. Hayashi, A. Tanioka, T. Araki, S. Tejima, T. Noguchi, M. Terrones, and M. Endo. (2015). High-performance multi-functional reverse osmosis membranes obtained by carbon nanotube polyamide nanocomposite. *Sci. Rep.*, 5, 13562.
- [11] Kim, H. J., M.-Y. Lim, K. H. Jung, D.-G. Kim, and J.-C. Lee. (2015). High-performance reverse osmosis nanocomposite membranes containing the mixture of carbon nanotubes and

graphene oxides. *J. Mater. Chem. A.*, *3*, 6798-6809.

- [12] Zhao, H., S. Qiu, L. Wu, L. Zhang, H. Chen, and C. Gao. (2014). Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multiwalled carbon nanotubes. J. Membr. Sci., 450, 249-256.
- [13] Kumar, M., M. A. Khan, and H. (2020). A. Arafat. Recent developments in the rational fabrication of thin film nanocomposite membranes for purification water and desalination. ACS Omega, 5. 3792-3800.
- [14] Jensen, M. O., and O. G. Mouritsen. (2006). Singlechannel water permeabilities of escherichia coli aquaporins AqpZ and GlpF. *Biophys. J.*, 90, 2270-2284.
- [15] Hovijitra, N. T., J. J. Wuu, B. Peaker, and J. R. Swartz. (2009). Cell-free synthesis of functional aquaporin z in synthetic liposomes. *Biotechnol. Bioeng.*, 104, 10.
- [16] Kumar, M., M. Grzelakowski, J. Zilles, M. Clark, and W. Meier. (2007). Highly permeable polymeric membranes based on the incorporation of the functional water channel protein aquaporin Z. Proc. Natl. Acad. Sci. U.S.A., 104, 20719-20724.
- [17] Tang, C. Y., Y. Zhao, R. Wang, C. Hélix-Nielsen, and A. G. Fane. (2013). Desalination by biomimetic aquaporin membranes: Review of status and prospects. *Desalination*, 308, 34-40.
- [18] Zhao, Y., C. Qiu, X. Li, A. Vararattanavech, W. Shen, J. Torres, C. Hélix-Nielsen, R. Wang, X. Hu, and A.G. Fane. (2012). Synthesis of robust and

high-performance aquaporinbased biomimetic membranes by interfacial polymerizationmembrane preparation and RO performance characterization. J. Membr. Sci., 423-424, 422-428.

- [19] Li, Y., Qi, S., Tian, M., Widjajanti, W., and R. Wang. (2019). Fabrication of aquaporinbased biomimetic membrane for seawater desalination. *Desalination*, 46, 103-112.
- [20] HFFO®2 module Aquaporin, https://aquaporin.com/wpcontent/uploads/2021/10/Aquapo rin-HFFO2-Datasheet-web.pdf. Retrieved on October 22, 2022.
- [21] Cohen-Tanugi, D., and J. C. Grossman. (2012). Water desalination across nanoporous graphene. *Nano Lett.*, 12, 3602-3608.
- [22] Surwade, S. P., S. N. Smirnov, I. V. Vlassiouk, R. R. Unocic, G. M. Veith, S. Dai, and S. M. Mahurin. (2015). Water desalination using nanoporous single-layer graphene. *Nat. Nanotechnol.*, 10, 459-464.
- [23] O'Hern, S. C., D. Jang, S. Bose, J.-C. Idrobo, Y. Song, T. Laoui, J. Kong, and R. Karnik. (2015). Nanofiltration across defectsealed nanoporous monolayer graphene. *Nano. Lett.*, 15, 3254-3260.
- [24] Groundbreaking Graphene Membrane Manufactured at Commercial Scale, https://www.globenewswire.com /en/newsrelease/2022/03/16/2404098/0/en /Groundbreaking-Graphene-Membrane-Manufactured-at-Commercial-Scale.html. Retrieved on October 22, 2022.
 [25] Althori A. P. Shorth S. T.
- [25] Akbari, A., P. Sheath, S. T. Martin, D. B. Shinde, M. Shaibani, P. C. Banerjee, R. Tkacz, D. Bhattacharyya, and M.

Majumder. (2016). Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide. *Nat. Commun.*, 7, 10891.

- [26] Zhang, Z., L. Zou, C. Aubry, M. Jouiad, and Z. Hao. (2016). Chemically crosslinked rGO laminate film as an ion selective barrier of composite membrane. *J. Membr. Sci.*, 515, 2042-11.
- [27] Itoh, Y., S. Chen, R. Hirahara, T. Konda, T. Aoki, T. Ueda, I. Shimada, J. J. Cannon, C. Shao, J. Shiomi, K. V. Tabata, H. Noji, K. Sato, and T. Aida. (2022). Ultrafast water permeation through nanochannels with a densely fluorous interior surface. *Science*, 376, 738-743.
- [28] Chen, W., S. Chen, T. Liang, Q. Zhang, Z. Fan, H. Yin, K.-W. Huang, X. Zhang, Z. Lai, and P. Sheng. (2018). High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes. *Nature Nanotechnology*, 13, 345-351.
- [29] Gong D., Y. Yin, H. Chen, B. Guo, P. Wu, Y. Wang, Y. Yang, Z. Li, Y. He, and G. Zeng. (2021). Interfacial ions sieving for ultrafast and complete desalination through 2D nanochannel defined graphene composite membranes. ACS Nano, 15, 9871-9881.
- [30] Sun, C., Q. Lyu, Y. Si, T. Tong, L.-C. Lin, F. Yang, C. Y. Tang, and Υ. Dong. (2022).Superhydrophobic carbon nanotube network membranes for membrane distillation: Highthroughput performance and transport mechanism. Environ. Sci. Technol., 56, 5775-5785.
- [31] Lu, D., Z. Zhou, Z. Wang, D. T. Ho, G. Shen, L. Chen, Y. Zhao,

X. Li, L. Gao, U. Schwingenschlögl, J. Ma and Z. Lai. (2022). An ultrahigh-flux nanoporous graphene membrane for sustainable seawater desalination using low-grade heat. *Adv. Mater.*, *34*, e2109718.

- [32] Chen, X., Y.-B. Zhu, H. Yu, J. Z. Liu, C. D. Easton, Z. Wang, Y. Hu, Z. Xie, H.-A. Wu, X. Zhang, D. Li, and H. Wang. (2021). Ultrafast water evaporation through graphene membranes with subnanometer pores for desalination. J. Membr. Sci., 621, 118934.
- [33] Chen, H., X. Liu, D. Gong, C. Zhu, G. Liu, J. Fan, P. Wu, Z. Li, Y. Pan, G. Shi, Y. Sun, and G. Zeng. (2023). Ultrahigh-water-flux desalination on graphdiyne

membranes. *Nature Water, 1*, 800-807. https://doi.org/10.1038/s44221-023-00123-3.

- [34] Qtaishat, M. R., M. Obaid, T. Matsuura, A. Al-Samhouri, J.-G. Lee, S. Soukane, and N. Ghaffour. (2022). Desalination at ambient temperature and pressure by a novel class of biporous anisotropic membrane. Scientific Reports. 12, 13564. Foi: 10.1038/s41598-022-17876-8 (2022).
- [35] Giwa, A., S. W. Hasan, A. Yousuf, S. Chakraborty, D. J. Johnson, and N. Hilal. (2017). Biomimetic membranes: A critical review of recent progress. *Desalination*, 420, 403-424.