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ABSTRACT  

 

Water pollution by antibiotics is a global challenge requiring an affordable, readily available, 

efficient solution. Therefore, this review evaluates the role of carbon nanotube (CNT) based 

filtration membrane as an efficient solution to provide clean water free of antibiotic residues. 

The study considered the preparation of CNTs and CNT filtration membranes and their 

performance towards removing antibiotics from water. The study revealed that there are 

several methods for the preparation of CNTs, among which the chemical vapour deposition 

(CVD) is commonly used. It further revealed that three types of CNT-based membranes exist, 

which are vertically aligned (VA-CNT), bucky paper CNTs (BP-CNT) and CNT-based 

composite (CNT-CPS). Despite the high performance demonstrated by the membranes, there 

is a need to evaluate the cost-effectiveness, safety, and regeneration of the membranes. More 

studies are also required on a large scale to understand the behaviour of the membranes in the 

purification of ample water supply and the effect of interference from other co-pollutants in 

water in the real-life polluted water matrix. The study showed that CNT-based filtration 

membranes are promising membranes for the future, with reliable properties for effectively 

purifying contaminated water. 
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1.0 INTRODUCTION  

 

The emergence of antibiotics in the 

water system has become a global 

threat to humans, animals, and the 

environment. Even though wastewater 

goes through wastewater treatment 

plants (WWTP), specific amounts of 

antibiotics are still found in the treated 

water due to the inefficiency of some 

of the WWTPs. The effluents 

emanating from the WWTP are often 

contaminated with traces of antibiotics. 

When discharged into the 

environmental water system (surface 

water), they pollute it [1-3]. Wastes 

from homes, hospitals, pharmaceutical 

industries, veterinary and animal 

husbandry and effluents from WWTPs 

are known core sources of antibiotics 

in environmental water systems [4, 5] 

The consumption of antibiotics is 

rising, and a previous study showed 

that more than 70 billion were 

consumed in 2010 [6]. In fact, for data 

generated in 2018, a study reported a 

global antibiotic consumption rate of 

14.30 defined daily doses per 1000 

population per day [7]. 

Table 1 shows some antibiotics 

reported in an environmental water 

system from some selected regions, 

suggesting the presence of antibiotics 

in water is a global challenge. 

Antibiotics may become persistent 

when they get into environmental 
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water; this is also the case when they 

get into WWTP and may become 

difficult to remove via simple or 

conventional water treatment processes 

[21-23]. The presence of these 

antibiotics in water has many negative 

consequences, including the 

emergence of drug-resistant 

microorganisms and degradation to 

forms that can threaten humans and 

aquatic animals [24]. 

 

 
Table 1 Antibiotics reported from some selected regions of the world 

 
Region Countries Antibiotics Concentration  

(μg L-1) 

Reference 

Africa Kenya 

Ghana 

South-Africa 

Nigeria 

Mozambique 

Levofloxacin 

Chlorotetracycline 

Metronidazole 

Erythromycin 

Trimethoprim 

0.040 

0.044 

0.962 

1.000 

9.480 

[8] 

[9] 

[8] 

[8] 

[10] 

America USA 

Brazil 

Canada 

Brazil 

USA 

Sulfamethoxazole 

Cefalexin 

Lincomycin 

Norfloxacin 

Ampicillin 

1.900 

0.133 

0.730 

0.051 

1.969 

[11] 

[12] 

[13] 

[12] 

[14] 

Asia-

Pacific 

Iran 

Australia 

Iran 

Taiwan 

Japan 

Azithromycin 

Cefalexin 

Ciprofloxacin 

Sulfamethoxazole 

Clarithromycin 

0.563 

0.027 

0.657 

14.300 

0.001 

[15] 

[15] 

[15] 

[16] 

[17] 

Europe Croatia 

Spain 

Croatia 

France 

UK 

Azithromycin 

Clarithromycin 

Trimethoprim 

Oxytetracycline 

Amoxicillin 

1.600 

0.010 

1.100 

0.680 

0.552 

[18] 

[19] 

[18] 

[18] 

[20] 

 

 

Most standard water treatment 

methods can remove antibiotics in 

water to some level but not completely. 

Toxic side products may be formed 

during the treatment, indicating that 

the method used to treat antibiotic-

contaminated water depends on the 

kind of antibiotics to remove. The goal 

is to achieve complete removal without 

forming a toxic side product. 

Membrane technology is often used to 

accomplish this purpose. Oxidation of 

organic pollutants in water may lead to 

the formation of toxic substances, 

although advanced oxidation process 

have been developed but the 

photocatalytic degradation may still 

produces small molecular weight 

molecules which can be removed my 

membrane technology [25-27]. 

Membrane technology ma combine 

processes such as adsorption and 

photocatalytic degradation to achieve 

this purpose [28, 29] A wide range of 

membranes has been prepared from 

different materials for this purpose 

[30]. The type of membrane used will 

also depend on its mechanism of action 

towards the target antibiotics. 

Membrane technology is one of the 

efficient ways of water purification due 

to its low energy consumption, high 

separation selectivity, continuous 

operation, zero chemical requirement 

and low energy consumption [31-33]. 

Despite the success of the use of 

membrane technology, it is challenged 

with the accumulation of contaminants 
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on its surface and within its pores; 

which causes fouling, leading to a 

reduction in the efficiency of the 

membrane and, most times, a 

replacement of the membrane becomes 

unavoidable [34, 35]. The membrane 

may be regenerated for reuse; 

however, the performance reduces over 

the regeneration cycle [30]. In some 

situations, regeneration is expensive 

due to using regeneration chemicals or 

solvents. The high cost of membrane 

regeneration makes the membrane 

technology process costly and may 

need to be more sustainable in 

developing countries. The concept of 

combined methods has evolved in 

membrane technology. In the 

combined method, membrane 

technology includes other methods like 

oxidation, peroxidation, photocatalysis, 

etc., in its operation along with 

separation. The inclusion of these 

methods helps overcome the challenge 

of fouling. For example, materials for 

advanced oxidation may be included in 

the membrane film, forming a 

composite that promotes the 

decomposition of contaminants at the 

surface of the membrane. 

Recently, most studies not only 

used separation by a membrane but a 

combination of different mechanisms 

of action, such as advanced oxidation, 

photocatalysis, peroxidation, and 

adsorption, to obtain a more efficient 

process using a membrane for the 

removal of antibiotics from water [36, 

37]. Different materials have been used 

in membrane filtration, requiring 

improvement in many forms. A carbon 

nanotube (CNT) filtration membrane 

study has shown promising results. For 

example, caffeine, acetaminophen, 

carbendazim and triclosan were 

removed from water using a CNT 

filtration membrane [38]. A mixed 

matrix carbon membrane has been 

reported to remove tetracycline in 

water [39]. Single-walled CNTs 

(SWCNT) and multi-walled CNTs 

(MWCNT) containing nanocomposite 

were prepared and used for the 

removal of ibuprofen and triclosan 

from water [40]. A study reported the 

removal of norfloxacin and bisphenol 

A from drinking water with the help of 

CNTs and polyvinyl chloride 

membranes [41]. Using CNT as 

constituent material in filtration 

membranes has the advantage of 

combining different mechanisms of 

action by including other materials in 

preparing membranes and forming a 

composite. This allows the privilege of 

a combined mechanism of action for 

completely removing antibiotics. It 

helps overcome the challenges of 

fouling encountered in using 

conventional membranes. Therefore, 

this review aims to understand the 

potential of using CNT filtration 

membrane filtration to remove 

antibiotics from water. 

 

 

2.0 CNT FILTRATION 

MEMBRANES 

 

CNTs are porous adsorbents with high 

electrical conductivity and active sites 

for interacting with other molecules. 

They are cylindrically shaped carbon 

atom sheets, which may be single-

walled (SWCNT) or multi-walled 

(MWCNT), as shown in Figure 1.  
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Figure 1 Diagrammatic representation of single walled (SWCNT) and multiwalled 

(MWCNT) shape carbon nanotubes 

 

 

They exhibit unique properties such 

as high surface area, optical, 

vibrational, and mechanical stabilities. 

Due to their surface interaction with 

other molecules, they can be coupled 

with other materials for advanced 

oxidation processes, sometimes called 

CNT-electrocatalytic membranes [42]. 

The CNT-based electrocatalytic 

filtration membranes are efficient, 

stable and with a three-dimensional 

structure that enhances their 

performance [43, 44]. They have 

shown better activity than conventional 

membranes regarding regeneration, 

stability, and well-defined structure 

[44]. The performance has been shown 

to depend on electron transfer, physical 

adsorption, and mass transfer with a 

capacity to degrade organic pollutants 

[45]. 

 

2.1 Preparation of CNT 

 

Several carbon sources are used in the 

preparation of CNT [46], while the 

common synthetic routes are arc 

discharge, chemical vapour deposition 

(CVD) and laser deposition methods 

[47]. The advantages and advantages 

of the three common methods are 

described in Table 2.  

 
Table 2 Advantages and disadvantages of different synthetic routes for CNTs 

 

Synthetic route Advantages Disadvantages Reference 

Arc discharge Limited structural 

defect, and simple 

method 

High temperature, 

required, short nanotube, 

and low production 

[48] 

Chemical vapor 

deposition 

Low temperature, mass 

production, and 

economically viable for 

large scale industrial 

production 

Best method for 

MWCNTs but not 

suitable for SWCNTs 

[49] 

Electrolysis Process simplicity, easy 

control, low energy 

consumption, use of 

cheap raw materials, 

easy control of product 

structure and 

morphology 

Destruction of graphite 

cathode during process, 

accumulation of 

electrolysis products,  

[50] 
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Two other methods have also been 

developed for the synthesis of CNT: 

sonochemical or hydrothermal and 

electrolysis [53]. The type of method 

used depends on the quality and 

intended application of the CNT.  

The CVD is usually used for large 

production of CNTs with high 

economic viability at low 

temperatures, unlike the arc discharge 

process, which requires high 

temperature [54-56]. Furthermore, 

most SWCNTs and MWCNTs are 

produced in large quantities via CVD. 

SWCNTs are formed when the catalyst 

size is less than 10 nm, while 

MWCNTs are made when the catalyst 

size is large [57]. Common catalysts 

are cobalt, iron, aluminium, 

molybdenum, and nickel. Impurities 

such as amorphous carbon, catalytic 

particles and nontubular fullerenes are 

produced along with the CNTs. When 

this occurs, there is a need to remove 

such contaminants. It is vital to ensure 

minimal impurities are generated 

during production to avoid the high 

cost of the separation step that may 

increase production costs. Gas phase 

CVD is always encouraged to prevent 

generating large amounts of impurities 

[58]. CVD is low-cost, scalable, and 

easy to control compared with the 

other methods.  

A study synthesised CNT on a 

silicon substrate using nickel as a 

catalyst, while ethanol was a carbon 

source in the argon carrier gas [59]. 

The role of the catalyst was checked in 

the CVD process involving the 

addition of molybdenum to a cobalt 

catalyst [60, 61]. It was revealed that 

the type and amount of catalysts play a 

vital role in the yield of CNTs during 

the CVD method. In consonance with 

this, a high SWCNT yield was reported 

using iron and molybdenum catalysts 

supported on a magnesium oxide 

substrate [62]. A 75.40 % yield of 

CNT was reported by using methane as 

a carbon source in the presence of 

ferrocene and molybdenum 

hexacarbonyl as catalysts [57]. A 

recent study reported a floating 

catalytic CVD method as the state-of-

the-art progress for controlling the 

growth of CNTs [49]. 

The laser deposition method 

involves the vaporisation of graphite 

target by pulse laser in a high-

temperature reactor in the presence of 

inert gas. The method is referred to as 

physical vapour deposition and is 

suitable for producing SWCNT. The 

SWCNTs made via this means have 

high purity and excellent structural 

integrity [63]. Different laser energies 

were studied in the production of CNT 

from graphite immersed in deionised 

water [64]. Previously, a study 

reported using a 532 nm Nd: YAG 

laser to target graphite in deionised 

water in the presence and absence of 

ultrasonic waves [65]. A 10 min 

irradiation of graphite in distilled water 

with a pulsed Nd: YAG laser of 

wavelength 532 nm has been reported 

to yield CNT [66]. The laser’s 

wavelength plays a vital role in the 

quality of CNT produced; apart from 

this, a study evaluated the effect of a 

liquid medium on the properties of 

Synthetic route Advantages Disadvantages Reference 

Sono-

chemical/hydrothermal 

Process is green, easy 

size control of CNT, 

large scale production, 

cheap technique, short 

time 

Low product yield, multi-

steps are required, 

expensive equipment, 

inefficient energy 

[51] 

Laser deposition High purity, very few 

structural defects 

Intensive cost and labor 

required 

[52] 
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CNTs [67]. The study revealed that the 

nature of the liquid medium used 

influences the properties of CNT 

formed. Therefore, when utilising the 

laser deposition method, care must be 

taken when selecting the wavelength 

and the liquid medium for the process. 

In the arch discharge method, graphite 

electrodes immersed in inert gas are 

exposed to a direct-current arc voltage 

to generate CNTs. The method favours 

the production of MWCNT using 

mixed metal catalysts [68]. A high 

degree of structural perfection is 

possible using the arch discharge 

method; however, a lot of variables 

and conditions are required, which 

makes it expensive [68, 69] since it 

may involve the use of electrodes and 

chemicals [70-73]. A study reported 

the synthesis of nitrogen and boron-

doped MWCNT [70]. Although the 

method appears superficial, obtaining a 

high yield from the method is always 

challenging. The arc discharge method 

may produce both SWCNT and 

MWCNT [74]. However, it is most 

suitably used to create MWCNT. A 

study that used methane as feedstock 

to produce MWCNT revealed that high 

ambient pressure favours the growth of 

MWCNT [75]. Increasing the arc 

current from 50 to 90 A also favoured 

the growth of MWCNT. Vaporising 

graphite rods have been reported to 

synthesise CNT in the presence of Ni 

and a Ni/Y mixture as catalysts 

applying a voltage of 30 V, current of 

95 A and electrical power of 2.25 kW. 

The study corroborated that as the 

catalyst increases, the yield obtained 

increases [76]. 

The hydrothermal process is 

advantageous over the other methods 

because it is environmentally benign 

and inexpensive [77]. The process uses 

lower energy and lower oxygen 

content; these advantages make it 

suitable for preparing CNTs. The 

method has been used to prepare CNT-

titania composite and evaluated for its 

ability to degrade acetaldehyde under 

UV illumination [78]. Similarly, the 

method was used to prepare CNTs, 

which were applied as supercapacitors 

[79]. Using the hydrothermal method, 

CNT was recently reported from 

renewable sources at low temperatures 

[80]. The electrolysis method works by 

depositing the CNT onto the electrode 

during the electrolytic process. The 

solid graphite goes into the solution 

while the carbon cathode breaks down. 

This leads to the production of 

MWCNTs. The process is simple, easy 

to control, low energy consumption, 

ease of controlling the properties of the 

CNTs produced and ease of process 

optimisation are the advantages of the 

process [50]. However, there are some 

disadvantages to the method, which 

include undesired accumulation of 

electrolysis products on the electrodes, 

breakdown of graphite cathode during 

the process and deposition of carbon 

nanomaterials in the electrolytic bath 

[50]. To minimise the concerns about 

climate change, the electrolysis method 

used in producing CNT harnessed CO2 

in a molten electrolytic process as 

feedstock [81]. 

 

2.2 Preparation of CNT Filtration 

Membranes 

 

Including CNT in membrane to form 

CNT based filtration membrane has 

emerged as an improved technique in 

separation technology. CNT filtration 

membranes use the combined unique 

properties of CNT and the separation 

power of the membrane, which 

produces enhanced membrane 

performance with improved 

permeability and selectivity. Therefore, 

when CNT is included in a membrane, 

it can change the membrane 

morphology, improve membrane 

porosity, improve mechanical 

properties, solve fouling problems, and 
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solve trade-off issues between 

permeability and selectivity [82]. The 

nature of the CNT affects the final 

membrane performance. As the 

number of walls in CNT (SWCNT or 

MWCNT) is boosted, the membrane 

performance improves [83]. A study 

has shown that when CNTs have a low 

diameter, the smallest SWCNTs 

exhibit better water transport than 

MWCNTs with a similar inner 

diameter [83]. Interestingly, the low-

diameter SWCNTs allow the 

fabrication of highly permeable and 

selective high-density membranes [84]. 

CNT-based filtration membranes may 

be divided into vertically aligned CNT 

(VA-CNT), bucky paper CNTs (BP-

CNT) and CNT-based composite 

membranes (CNT-CPS) as previously 

described [85, 86]. The differences 

among VA-CNT, BP-CNTs and CNT-

CPS are highlighted in Table 3. 

 
Table 3 Comparison of the different types of CNT filtration membrane 

 

 

 

The VA-CNT membranes are 

perpendicularly arranged to form 

aligned and opened channels [87]. The 

membrane allows a high flux of water 

through its structure which is an 

additional benefit to its use [88, 89]. 

VA-CNTs are produced by engulfing 

CNT in a polymer matrix. The CVD 

method can also achieve this by 

growing the CNT and polymer matrix 

on a substrate. Since most CNTs come 

as powdered when produced in large 

quantities, it is vital to pre-align the 

CNTs because powdered CNTs are 

unsuitable for producing VA-CNTs. 

Care must be taken because the 

synthetic route affects the length, 

density, diameter, and number of walls 

produced [87, 90]. The most common 

methods used to synthesise VA-CNTs 

are CVD, arc discharge, and laser 

ablation. A study has shown that arc 

discharge and laser ablation are 

expensive, while the CVD method is 

economical and affordable [91]. A 

study reported using microwave 

plasma-enhanced CVD (MPECVD) to 

synthesise VA-CNT [92, 93]. The 

process generated high electron 

density, ensuring a higher VA-CNT 

quality and reasonable yield. During 

the synthesis of VA-CNT, both ends of 

the CNT are covered by fullerene caps, 

making fluid transport through its inner 

core difficult. Moreover, the interstitial 

spaces between CNTs are not narrow 

because the arrays are fixed on a 

substrate used during production. 

Therefore, direct use of VA-CNT may 

only be beneficial with modification 

during synthesis to enhance 

performance as the membrane. 

Recently, VA-CNT was synthesised 

via template-assisted pyrolysis of 

polybenzimidazole-Kapton in the pores 

of anodised aluminium oxide [94]. A 

VA-CNT BP-CNT CNT-CPS 

Fabrication process is 

complicated 

Fabrication process is 

simple 

Fabrication process is simple 

Mechanical strength is moderate Mechanical strength is 

limited 

Mechanical strength is 

excellent 

The network is compact The network is compact Loosely fit 

Arrangement is vertical Arrangement is random Arrangement is random 

Special operating system is 

needed 

Requires simple operating 

system 

Requires simple operating 

system 

High water flux rate Moderate water flux rate Moderate water flux rate 
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comparison of the different synthetic 

methods for VA-CNT filtration 

membranes is shown in Table 4. The 

method of choice for the synthesis of 

VA-CNT depends on the properties 

desired and the specific applications. 

When small diameter of VA-CNT is 

required, alcohol-assisted CVD would 

be the method to consider. It can 

further be concluded that Si is the most 

common substrate used in the synthetic 

process which may be due to the 

stability of si that enhances the 

stability of CNT [95]. 

BP-CNTs may be described as 

buckminsterfullerene or freestanding 

porous CNT ropes bounded by weak 

Vander Waals' force [116-118]. Most 

BP-CNTs are prepared by vacuum 

filtration, which involves three steps. 

Firstly, CNT is dispersed in a suitable 

solvent (N-Methylpyrrolidone and N, 

N-dimethylformamide are commonly 

used) in the presence of a surfactant 

(Sodium dodecyl-sulfate and 

polyoxyethylene octyl phenyl ether are 

widely used). In the second step, the 

homogeneously dispersed solution is 

filtered, and in the final step, the 

filtered CNTs are deposited on the 

filter forming the membrane [119, 

120]. The mechanical property is weak 

with Young’s modulus and tensile 

strength of about 0.2-2 GPa and 2-33 

MPa [121-123]. However, this may be 

improved when incorporated into a 

polymer matrix [118]; the CNT 

composite usually formed has well-

improved properties. A recent study 

reported such improvement using a 

metal-organic framework to achieve a 

double-layer superior membrane 

performance with high permeance up 

to 59.3 and 76.0 L m−2 h−1 bar−1 for 

water and methanol, respectively 

[124]. Another study has also 

demonstrated the preparation of an 

improved BP-CNT from a 

carboxylated CNT with further 

modification by incorporating a 

surfactant, which improved the 

hydrophilic properties [125]. 

CNT-CPS membranes are designed 

to exhibit advanced transport and 

selectivity features due to the 

uniqueness of their properties, such as 

conductivity, water transport, 

temperature stability, chemical 

inertness, and mechanical stability 

[126]. CNT-CPS are produced from 

the functionalisation of CNT with the 

inclusion of functional materials and, 

in some situations, polymeric materials 

forming a membrane with enhanced 

performance [127]. The radiation-

induced method was recently reported 

for the modification of MWCNTS to 

produce polyvinyl alcohol imprinted 

MWCNT, which was further designed 

with cellulose acetate to obtain CNT-

CPS with improved properties, which 

gave high filtration flux 

(approximately1660 L m−2 h−1 bar−1) 

and oil-rejection (>99.1%) when 

applied on dodecane-in-water 

emulsions [128]. CNT-CPS was 

produced from self-supporting BP-

CNT, which lasted for up to 40 h in 

continuous testing. The CNT-CPS 

exhibited a high permeability of 3.3 x 

10-12 kg (m.s.Pa)-1, having an average 

percentage salt rejection of 95% [129]. 

Poly(vinyl-alcohol)-carbon nanotube 

composite membranes were employed 

in electro-ultrafiltration, which 

enhanced sieving performance [130]. 

Further assessment based on zeta 

potential measurements, microscopy 

evaluation and permeate flux 

suggested significant performance of 

the CNT-CPS. The combination of 

membrane technology and advanced 

nanotechnology has shown 

effectiveness as a synergistic approach 

for treating polluted water.  
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Table 4 Comparison of the properties of CNTs emanating from some selected synthetic method, process catalysts and substrates 

 
Synthetic Method Catalyst Thickness 

(μm) 

Substrate Diameter of 

CNT (nm) 

Type Reference 

Thermal-enhanced 

CVD 

Fe/Al2O3 

Al/Al2O3 

Fe/Mo 

Fe/Al2O3 

Al/Co 

1.2/10 

0.5 

 

10/10 

0.8-3 

15/1 

Si wafer 

n-type (phosphorus) Si (100) 

wafers 

Si (100) wafers 

Si 

n-type Si wafer coated with 300 

nm thick of SiO2 

7.4–13.6 

1.6–4.0 

 

1.0-4.0 

6-12 

3-4 

MWCNT 

MWCNT 

 

MWCNT 

MWCNT 

MWCNT 

[96] 

[97] 

 

[98] 

[99] 

[100] 

Laser-assisted CVD Mo/Fe/Al 

Fe 

50–200 

5-100 

Si 

Si 

1 

30 

MWCNT 

MWCNT 

[101] 

[102] 

Hot filament PECVD Ni 

Fe/Al2O3 

FeNi 

Ni 

15–60 

0.5 

10 

8 

Glass 

Si wafer 

Glass substrate 

Glass substrate 

20–400 

0.8–1.6 

10–30 

10–30 

MWCNT 

SWCNT 

MWCNT 

MWCNT 

[103] 

[104] 

[105] 

[106] 

Alcohol-assisted 

CVD 

Fe/Co 

Ru 

Pt 

Co/Cu 

Co/Mo 

1.2/10 

0.2 

0.5 

1.8 

- 

Si wafer 

Al2O3/SiO2/Si 

Si/SiO2 

Si/SiO2 

quartz substrate (25 × 25 × 0.5 

mm3) 

0.8 

0.84–1.26 

1 

0.9 

0.9 

SWCNT 

SWCNT 

SWCNT 

SWCNT 

SWCNT 

 

[107] 

[108] 

[109] 

[110] 

[111] 

Microwave 

plasma-enhanced 

CVD 

Fe 

Co 

Ni 

Co 

Al2O3/Fe 

10 

2 

70 

3-50 

30/1 

n-type Si (100) wafer 

Mo 

Si 

Si 

Si wafer 

15 

30 

10–35 

10–35 

3-5 

MWCNT 

MWCNT 

MWCNT 

MWCNT 

DWCNT 

[93] 

[112] 

[113] 

[114] 

[115] 
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Precisely, CNTs, due to their unique 

property in composite membranes, 

have played an essential role in water 

treatment [131-134]. This synergy has 

exhibited outstanding performance in 

catalytic, adsorption and 

electrochemical properties, which 

gives them application in water 

treatment to remove antibiotics in 

water. This way, the properties can be 

combined in a single water purification 

process. 

 

 

3.0 CNT FILTRATION 

MEMBRANE AS A RESOURCE 

FOR REMOVING ANTIBIOTICS 

IN WATER 

 

Several modifications have been 

developed to improve the performance 

of CNT-based filtration membranes for 

water purification. Many approaches 

have been embarked on, emanating 

from numerous products in literature. 

Some of the reported membranes are 

compared in Table 5. Most CNT-based 

filtration membranes in the literature 

exhibited high capacities for removing 

antibiotics in water. The presence of 

CNTs in the membrane structure 

improved the performance of many of 

the membranes. Including CNTs in the 

polymeric membrane is advantageous 

and should be encouraged. A study 

demonstrated the preparation of a 

carbon-based nanofiltration membrane 

with MWCNTs interposed between 

graphene oxide forming a three-

dimensional structure (PDDA-

MWCNTs/GO), which was used to 

remove tetracycline hydrochloride 

from water [135]. The PDDA-

MWCNTs/GO is an efficient 

membrane that can filter antibiotics in 

water system via electrostatic 

interaction. It expresses a 99.23% 

removal capacity towards the studied 

tetracycline hydrochloride and a high-

water permeation of 16.12 L m- 2 h- 1 

bar- 1. This performance is better than 

some previously reported water 

purification processes [136, 137] 

which supports the concept of 

membrane technology being a 

promising technology for now and the 

future in water purification. The 

optical image of the PDDA-

MWCNTs/GO is shown in Figure 2 

[135]. 

The PDDA-MWCNTs/GO showed 

excellent mechanical flexibility and 

could be reused over 7 cycles without 

forming any apparent cracks. 

Electrochemical and carboxylated 

CNT were prepared by vacuum 

filtration to remove antibiotics and 

antibiotic resistance genes in the water 

system [33]. The preparation was 

achieved via a simple reaction route 

using polytetrafluoroethylene as a 

substrate. Another study revealed the 

modification of the SWCNT 

membrane by UV-initiated graft 

polymerisation [6]. A benzophenone 

initiator (photo-initiator) was used, 

while 2,2,3,4,4,4-hexafluorobutyl 

methacrylate (HFBM) in dioxane 

served as the monomer. A description 

is shown in Figure 3 [6]. The 

modification created a combined 

hydrophilic/hydrophobic layer in the 

membrane as a means of improving the 

performance of the membrane. 
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Table 5 Comparison of the efficiency expressed by some selected CNT based filtration membranes towards some antibiotics in water 

 
Membrane material Contaminant Observation Remark Efficiency Effectiveness & 

reusability 

Reference 

Reduced graphene 

oxide with tunable 

magnetic nanoparticles 

Bisphenol A High surface area and 

magnetic properties. 

Adsorption process that 

fitted for pseudo-second-

order model 

The process is favorable 

at ambient temperatures 

with great reusability 

Low Low cost & 

Reusable 

[138] 

Single and multi-walled 

carbon nanotubes 

Oxytetracycline 

and 

ciprofloxacin 

Adsorption capacity 

remained the same in cold 

and warm conditions. 

SWNCT had the highest 

adsorption capacity 

Enhanced adsorption of 

oxytetracycline 

Moderate Low cost & 

reusable 

[139] 

Multilayer graphene Phenanthrene Possibility of exfoliation and 

fragmentation that increases 

adsorption capacity 

It can be used for 

controlling thickness 

High Moderate cost & 

Reusable 

[140] 

Activated Graphene Ciprofloxacin Increased surface area pH dependent process Moderate Low cost & 

Reusable 

[141] 

MWCNT and Powdered 

Activated carbon 

Nitrofurazone High efficiency that fitted 

for pseudo-second-order 

kinetic. 

Temperature dependent 

performance 

Moderate Low cost & 

Reusable 

[142] 

SMWCNT 

functionalized by 

MWCNT 

Sulfamethazine Preparation by dip-coating 

and pyrolysis 

Ultrasonication methods 

was more 

effective 

Low Low cost & 

Highly reusable 

[143] 

Magnetic rGO 

composite 

Chlorophenols Easily regenerated Efficient in neutral and 

acidic pH 

Moderate Low cost & 

Reusable 

[144] 

Single walled carbon nanotubes = SWCNT, multi-walled carbon nanotubes = MWCNT, rGO = reduced graphene oxide 
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Figure 2 Optical images of PDDA-MWCNTs/GO membrane (a), image showing the 

flexibility of the PDDA-MWCNTs/GO membrane (b), image showing the stability of the 

PDDA-MWCNTs/GO membrane in water (c), image of the PDDA-MWCNTs/GO at more 

than 8th cycle of operation (d), SEM images of cross-sections of the PDDA-MWCNTs/GO 

membrane (e). The inset shows a higher magnification image of the PDDA-MWCNTs/GO 

membrane, TEM images of the PDDA-MWCNTs/GO membrane (f) [135] 

 

 

 
Figure 3 Modification of SWCNT membrane by UV-initiated graft polymerization [6] 

 

 

The water permeation and 

adsorption capacity of some selected 

CNT-based filtration membranes are 

shown in Table 6. 

The adsorption capacity expressed 

by the membrane towards antibiotics in 

solution is high. This suggests that 

CNT-based filtration membranes are 

membranes for the future in water 

purification. A hybrid carbon 

membrane was reported to remove 

tetracycline hydrochloride in drinking 

water [151]. The combined effort of 

graphene oxide (GO), CNTs and 

activated carbons (ACs) effectively 

removed 98.90% of tetracycline 

hydrochloride from water. 
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Table 6 Water permeation and adsorption capacity of some selected CNT based membranes 

 
Membrane Antibiotic water 

permeation  

(L m−2 h−1 bar−1) 

Adsorption 

capacity (%) 

Reference 

PDDA-

MWCNTs/GO 

TCH 16.12 99.23 [135] 

SWCNT-MO SMZ 

TMP 

TC 

- 98.80 

95.50 

87.00 

[6] 

PES/ZrP CIP 97.62 99.70 [145] 

CeO2@CNT DCF 

SMZ 

CIP 

TC 

CBZ 

- 91.20 

91.30 

94.40 

99.30 

89.40 

[146] 

TFC-FO TC - 99.30 [147] 

PSF-PAA AMX 108.30 91.00 [148] 

PNF TMP 

SMZ 

21.10 >99.00 

>99.00 

[149] 

PCu2W11/NH2-PVDF TC - 98.30 [150] 
Tetracycline hydrochloride = TCH, - = Not reported, PDDA-MWCNTs/GO =   Poly 

diallyldimethylammonium chloride-multi-walled carbon nanotubes-graphene oxide, sulfamethoxazole 

= SMZ, tetracycline = TC, trimethoprim = TMP, SWCNT-MO = Single-walled carbon nanotube-Mild 

oxidation, PES/ZrP = nano-composite adsorptive membrane based on Zirconium Phosphate (ZrP) 

adsorbent supported on Polyethersulfone (PES), CIP = ciprofloxacin, carbamazepine = CBZ, 

diclofenac sodium = DCF, TFC-FO = thin film composite- forward osmosis, PSF-PAA =polysulfone-

polyacrylic acid, AMX = amoxicillin, PNF = Bifunctional photocatalytic nanofiltration, PCu2W11/NH2-

PVDF = polyoxometalate on ethylenediamine functionalized polyvinylidene fluoride 
 

 

The AC was uniformly included in 

the GO for enhanced performance, as 

shown in Figure 4 [151], which 

revealed uniform insertion of CNTs 

and ACs in the GO structure. The 

inclusion improved the surface area of 

GO, which increased from 

approximately 86 m2 g-1 to 414 m2 g-1 

for the GO-AC membrane and 326 m2 

g-1 for the GO-CNTs membrane. 

Recently, MWCNT electrochemical 

filtration membrane was prepared and 

applied to remove sulfamethoxazole, 

ciprofloxacin, and amoxicillin from the 

aqueous system [44]. The result further 

revealed high efficiency even in 

treating a mixed matrix of the 

combined antibiotics. Fortunately, the 

study showed that CNT-based 

filtration membranes might effectively 

treat a complex mixture of antibiotics 

matrix, which conventional membrane 

processes may find challenging. 

4.0 CURRENT TREND AND 

FUTURE PERSPECTIVES 

 

Many studies have investigated using 

VA-CNT, BP-CNT, and CNT-CPS as 

membranes for water treatment. There 

is no doubt that CNTs-based filtration 

membranes have the potential that may 

be improved for water treatment. 

Presently, membrane technology is 

used in many parts of the world for 

water treatment, most of which are 

based on reverse osmosis. One major 

challenge has been the replacement of 

the filters over time which many 

consider expensive and not sustainable 

in poor developing countries. Using 

CNTs-based membranes opens many 

opportunities for using them in water 

treatment.  
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Figure 4 SEM images of a cross-section of (a) GO, (c) GO/CNT, and (d) GO/AC 

membranes, and TEM images of (b) GO, (d) GO/CNT, and (f) GO/AC membranes [151] 

 

 

In the case of CNT-based 

membranes, it is possible to adsorb 

organic pollutants in water and oxidise 

the contaminant to simple molecules 

such as O2 and CO2; this possibility 

makes it easy to use the membrane 

over a long period. Unfortunately, 

most of the studies reported are on the 

laboratory scale. There is a need to 

conduct studies on a large scale to 

understand the behaviours of the CNT-

based membranes on a large-scale 

application; studies in the future should 

focus on scaling up the process. This 

may also include a scale-up in the 

manufacturing of the membranes. It is 

necessary to do a cost evaluation of the 

manufacturing of the CNT-based 

membranes and the cost of running the 

water treatment with the membranes. 

A cost evaluation study is therefore 

required. 
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The cost of carbon in the market is 

expensive, making the presence 

purchase of carbon sources to produce 

CNTs expensive [152]. Although 

several studies use bio-sources, the 

process cost, such as energy, 

technology, and waste management 

generated during the process, are still 

makes it high [152]. It is crucial to 

attain the full potential of the process 

by developing cheap and affordable 

technology for carbon production. 

Most of the studies reported were 

based on the synthetic water system in 

the laboratory containing a single 

antibiotic pollutant. Real-life polluted 

water has a complex matrix of 

molecules with different behaviours. It 

is essential to understand the 

selectivity of the membranes in a 

complex matrix of a contaminated 

water system. Therefore, future studies 

should prioritise understanding the 

performance of the membranes in real-

life polluted effluents and 

environmental water systems like 

rivers, streams, etc. This will help 

understand the behaviours of the 

membranes towards complex 

antibiotics matrix and interferences 

from other water pollutants. 

Most of the studies focus on 

improving the wetting behaviour of 

membranes by surface modification 

through surface functionalisation by 

including different functional groups. 

This approach sometimes damages the 

CNT structure, which may decrease 

flux rate [82]. It is necessary to 

optimise modification processes that 

will not damage the CNT's structure or 

intrinsic properties; however, emphasis 

should be on developing freestanding 

and free CNT membranes with 

excellent properties for removing 

antibiotics from water. It is vital to 

check the recycling or regeneration of 

CNT-based membranes; most studies 

did not report the regeneration or 

recycling of the membrane, but a few. 

Checking this will further help to 

understand whether or not the 

membrane leached into the water after 

several uses. Future work needs to look 

in this direction. It is necessary to fact-

check the toxicity of the membrane 

because after the membranes are 

completely spent, what happens to 

them is crucial. This may also include 

the membranes' biodegradability, 

environmental safety, and safety 

management when they are completely 

spent. 

 

 

5.0 CONCLUSION 

 

The review is focused on 

understanding the use of CNT-based 

filtration membranes to remove 

antibiotics from solution. Antibiotics 

have been detected in environmental 

water systems with the core sources 

being wastes generated from homes, 

hospitals, pharmaceutical industries, 

and effluents from WWTPs. The 

preparation of CNTs and CNT 

filtration membranes has been 

discussed. The study revealed that 

there are several methods for the 

preparation of CNTs, among which the 

CVD method is commonly used. It 

further revealed that three types of 

CNT-based membranes exist, VA-

CNT, BP-CNT, and CNT-CPS, with 

several possibilities. The study showed 

that CNT-based filtration membranes 

are promising membranes for the 

future with reliable properties for 

effective purification of contaminated 

water. However, evaluating the cost-

effectiveness, safety, and regeneration 

of the membranes is necessary. More 

studies are also required on a large 

scale to understand the behaviour of 

the membranes in the purification of 

large water supply and the effect of 

interference from other co-pollutants in 

the real-life polluted water matrix. 
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