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ABSTRACT  
 

Glycidyl methacrylate/ethyl dimethacrylate (GMA/EDMA) monoliths consisting of pores 

induced by polypropylene nanofibers (PPNF) were developed. For creating these pores, 

templating technique was used where the PPNF act as a template. The PPNF were fabricated 

using a melt blowing technique at various process operations of polymer flowrate, air 

pressure and die-to-collector distance at ranges of 15 to 30 Hz, 0.15 to 0.3 MPa and 0.20 to 

0.6 m respectively designed using a response surface methodology (RSM). Subsequently, a 

monolith solution was synthesis using the polymerization of GMA and EDMA, with 
azobisisobutyronitrile (AIBN) as initiator and cyclohexanol as porogen. The PPNF and 

GMA/EDMA monoliths were characterized using SEM and melting point instrument. The 

findings show, PPNF fiber diameter and melting points were in the range of 5 to 14  103 
nm and 120 to 130 °C respectively. RSM analysis suggests that air pressure and die-
to-collector distance could be an important factor for PPNF final diameter. 
Morphology studies demonstrate that GMA/EDMA monolith have been successfully acquired 

mesoporous structure and creating uniform pores by PPNF template produce at 22.5 Hz, 
0.22 MPa and 0.40 m. As a conclusion, the PPNF can be proposed as a template to 
prepare monolith having uniform pores.  
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1.0 INTRODUCTION 

 

A monolith is a material consisting of 

connected pore channels. Monolith 

applications include as a separation 

media in gas adsorption [1], transport 

processes [2], water purification [3] 

and oil absorption [4]. Materials used 

to create monolith are metallic [5], 

ceramic [5] and carbon [6]. 

The techniques to produce 

monolith are free radical processes, 

polymerized high internal phase 

emulsions, cryogels, living 

polymerizations, soluble polymers and 

polycondensation [7].  

One key property of monolith is its 

porous structure indicated by its pore 

sizes which make it suitable for the 

application of separation, catalysis and 

solid-phase chemistry [8].  

Polymerization of Glycidyl 

methacrylate/ethyl dimethacrylate 

(GMA/EDMA) able to produce a 
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porous structure within the monolith. 

This is achieved by tuning key 

parameters such as temperature, 

composition of the pore-forming 

solvent mixture, and content of cross-

linking divinyl monomer [8]. Previous, 

preparation, characterization and 

functionalization of porous 

polymethacrylate monoliths have been 

extensively studied [7, 9–11].  

However, the limitation faced 

during the monolith production is 

uneven pore distribution on the 

monolith structure leading to a “wall-

channel” effect, causing internal 

pressure built up therefore reducing its 

efficiency and also a relatively low 

mechanical strength [12].  

Alternative to the conventional 

porogen-based method, a template-

based method able to precisely control 

the pore size, porosity, and 

interconnectivity of the monolith. This 

is done by incorporating nanoparticles 

template in a polymer matrix followed 

by template removal by dissolution or 

heating method (Ongkudon and Wong, 

2014). 

Guillemot et al. [13], fabricated a 

silica-based monolith by using 

poly(methyl methacrylate) 

nanoparticles as template. The 

template was then removed by 

pyrolysis at 480 °C for 48 hrs. Klepel 

et al., [14] using template method 

produced carbon/silica composite 

porous monolith after carbonization at 

160 °C and calcination at 800 °C. The 

disadvantage of template-based silica 

monolith is the longer time needed for 

the formation of silica and the 

exclusion of the template. 

Nanofiber has unique physical and 

mechanical properties, high surface 

area and small pores sizes making 

them suitable for various application 

[14–16].   

Since to the best of our knowledge, 

only limited studies have been carried 

out on the templating using nanofiber, 

the objective of this study is to produce 

melt blown nanofibers with properties 

suitable to become a template to 

produce monolith with uniform pores. 

 

 

2.0 METHODOLOGY 

 

2.1 Design of Experiment by 

Central Composite Design (CCD) 

 

The experimental design of the 

operating condition  was performed  

using Response Surface Methodology 

(RSM) as used in other studies [17, 

18]. The factors involves were, the 

polymer flowrate (Hz), air pressure 

(MPa) and die-to-collector distance 

(m) and were set in the ranges of 15 to 

30 Hz, 0.15 to 0.3 MPa and 0.20 to 0.6 

m respectively as shown in Table 1. 

 
Table 1 Experiment design by CCD of 

RSM 

 

Run Air 

Pressure 

(MPa) 

Polymer 

melt  

flow rate 

(Hz) 

Die to 

collector 

distance 

(m) 

1 0.23 22.50 0.40 

2 0.15 30.00 0.60 

3 0.23 22.50 0.40 

4 0.23 35.11 0.40 

5 0.23 22.50 0.40 

6 0.30 15.00 0.20 

7 0.23 22.50 0.06 

8 0.35 22.50 0.40 

9 0.23 22.50 0.74 

10 0.30 15.00 0.60 

11 0.23 22.50 0.40 

12 0.15 15.00 0.60 

13 0.23 9.89 0.40 

14 0.15 30.00 0.20 

15 0.23 22.50 0.40 

16 0.30 30.00 0.60 

17 0.10 22.50 0.40 

18 0.23 22.50 0.40 

19 0.15 15.00 0.20 

20 0.30 30.00 0.20 
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2.2 Production of PPNF using Melt 

Blowing Technique 
 

The melt blowing technique was used 

to produce the PPNF. Polypropylene 

(Sun Allomer) was supplied into the 

extruder and heated gradually from 

room temperature to 300 °C to prevent 

polymer degradation meanwhile the air 

temperature was set at 450 °C. The 

manipulated variable were set to match 

the experimental design by Response 

Surface Methodology.  

 

2.3 Preparation of Monolith 

Solution 

 

A 5 ml solution containing 60 % of 

porogen and 1 % of mixture of 

Azobisisobutyronitrile (AIBN), 

cyclohexanol, glycidyl methacrylate 

(GMA) and ethyl dimethacrylate 

(EDMA) were used for the monolith 

fabrication. The mixture contains 20 

mg of AIBN, 1.4 ml of GMA, 0.6 ml 

of EDMA and 3 ml of porogen.  

 

2.4 Incorporation of Monolith- 

PPNF   

 

100 mg of PPNFs was soaked into the 

monolith solution and put into an 

ultrasonicator for 20 mins at 28 ˚C. It 

then heat treated at 60 ˚C for 90 mins 

in a water bath. Next, the PPNF-

monolith was soaked with methanol 

and leave for overnight, before being 

washed using distilled water. The 

structure was then sintered using 

Furnace (46100, High Temperature 

Furnace, Thermolyne) at 150˚C for 30 

minutes.  

 

2.5 Characterization Techniques 

 

Scanning Electron Microscope (S-

3400N, Hitachi, Japan) was used to 

obtain the average diameter of the 

PPNF and monoliths. The melting 

point of PPNF was analyzed by a 

Melting Point Instrument (MP, 

HISBY) to study any change in 

melting point due to the thermal 

treatment by the melt blowing process 

and to select the lowest sintering 

temperature for fiber removal. 

Homogeneity of PPNF was analyzed 

by calculating the standard deviation of 

the PPNFs diameters.   

 

 

3.0 RESULTS AND DISCUSSION 
 

3.1 Physical Observation of the 

PPNF  

 

As shown in Figure 1, Sample 2, 4, 6, 

7, 14, 15, 19 and 20 show the 

occurrence of fuse fibers to a certain 

degree, therefore forming an 

underdeveloped fiber web. This is due 

to the incomplete separation of 

individual fibers which is influenced 

by the melt blowing operating 

conditions. These fibers were 

undesirable to be used as a PPNF 

monolith template.  

Samples 1, 3, 5, 8, 9, 12, 16 and 17 

shows the formation of crystal inside 

the fiber web indicated by the 

occurrence of small bead particles. 

This may due to the incomplete 

melting of the PP polymers which 

related to the polymer melt flow rate. 

Some of the fiber also shown fused 

fibers to a certain degree. These fibers 

were also excluded as the PPNF 

monolith template.  

Subsequently, for Samples 10, 11, 

13, and 18, although these samples are 

showing some fused fibers there were 

no crystal formed on the PPNF which 

is a characteristic that is desired for a 

monolith template.  

 

 



68                                              Z. Kamin et al. 
 

    
1 2 3 4 

    
5 6 7 8 

    
9 10 11 12 

    
13 14 15 16 

    
17 18 19 20 

 
Figure 1 SEM images of the PP fibers samples spun at operating conditions stated in Table 1 
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Figure 2 Mean diameter with standard deviation of the melt-blowing PP fiber samples spun 

at operating conditions stated in Table 1 
 
 

3.2 Diameter of the PPNFs 

 

Figure 2 shows the mean diameters 

with standard deviation of the samples. 

The average PPNFs diameters 

observed from SEM were in the range 

of 4.94 to 13.95  103 nm, which are 

slightly higher [19–21] but comparable 

[22] to other studies. 

At a constant polymer flowrate and 

die-to-collector distance, Sample 10 

conditioned at a higher pressure than 

Sample 12 acquired smaller average 

diameter of 5.5  103 nm in contrast to 

8.21  103 nm. Here, there is enough 

force for the attenuation process to 

occur and to overcome the drag force 

to produce fibers with smaller sizes. 

The average diameter of a fiber can 

decrease in sizes as the air pressure is 

increased [23].  

Sample 11 which conditioned at a 

higher polymer flowrate than Sample 

13 produce larger average fiber 

diameter of 7.47 19  103 nm in 

opposed to the later at 7.19  103 nm. 

An increase in the polymer flowrate, 

decrease the drag force acting on the 

polymer filament therefore increase the 

size of fiber diameter [19]. 

Sample 9 having die-to-collector 

distance of 74 cm was found to have a 

smaller average fiber diameter of 5.59 

 103 nm than Sample 11 which having 

die-to-collector of 40 cm having an 

average diameter of 7.47 103 nm.  

As the distance of fiber collector 

increases the average fiber diameter 

decreases [24]. This length provides 

enough time for the attenuation process 

to occur on the fiber filament therefore 

decreases fiber size.  

The standard deviations of the 

average fiber diameters were found to 

be majority in between 1 and 3. 

Sample 4 and Sample 3 show the 

lowest and highest standard deviations 

at 1.91 and 7.6 respectively. A high 

standard deviation indicates 

inhomogeneous PPNF.  

 

3.3 RSM Analysis 

 

ANOVA evaluation indicated that the 

model obtained is significant. The 

regression model in actual term for 

average fiber diameter D is:  

 

D = +10.03892A + 0.30732B + 

4.04331C -0.90444AB + 13.58333AC-

0.37750BC+46.99563A2 +3.22250E-

003B2 -3.37912C2             (1) 

 

where A is air pressure, B is polymer 

flow rate and C is the die-to-collector 

distance.  

The Model F- value of 5.09 implies 

the model is significant with a p value 

at 0.009. The term model in this case, 

A and C are significant as the p values 

are less than 0.0500 i.e. 0.0002 and 

0.0478 respectively. However, for B, 

0
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the p value is 0.0712, which is lesser 

than 0.1000 in which model term 

greater than this value is considered 

not significant.  The model graph 

shows that as both of the air pressure 

and die-to-collector distance increase, 

the average fiber diameter decrease, 

with air pressure was shown to have a 

more significant impact. 

 
Table 2 Process parameter used for nanofiber fabrication as monolith template 

 

Samples Air 

pressure 

(MPa) 

Polymer 

Flowrate 

(Hz) 

Die to 

collector 

distance 

(m) 

Average 

diameter 

(x 103 nm) 

Standard 

deviation 

 

Melting 

point oC 

A 0.22 9.89 0.40 5.50 3.57 123.8 

B 0.30 15.00 0.60 7.47 3.60 125.7 

C 0.22 22.50 0.40 7.19 3.29 127.7 
 
 

Therefore, this finding indicates that 

air pressure and die-to-collector 

distance are significant model terms in 

influencing the average diameter of the 

PPNF for the studied ranges.  

 

3.4 Melting Point of PPNF  

 

The melting point of the PPNFs was in 

the range of 120 to 130 ˚C whereas PP 

granules used for PPNF fabrication 

were 138 ˚C.  

This means that there is no 

significant change occurred in PPNF 

properties after sintering. The melting 

point of the PPNF was analyzed to 

select the temperature for PPNF 

removal in order to produce 

GMA/EDMA monolith.  

 

3.5 Monolith Template Selection 

 

PPNF templates were selected based 

on (1) there is no crystallized formed 

inside the fiber web, (2) the average 

fiber diameter is not too small. The 

melting points were not considered as 

there are insignificant changes after 

processing, therefore is not considered. 

These criteria are required to ensure 

that the PPNF template able to produce 

uniform pores and removable from the 

PPNF-monolith structure. 

The PPNF having crystal beads will 

cause uneven pores sizes distribution 

inside the monolith structure and 

difficult to remove from the monolith. 

In which, Sample 10, 11, 13 and 18 fit 

criteria (1). However, since Sample 10 

and 8 has a same process condition, 

only Sample 10 was selected. 

For the average fiber diameter, it is 

important to choose not too small 

average fiber diameter due to the 

difficulty for flushing out the melted 

PPNF from the monolith structure 

during the sintering process. The 

overall average fiber diameter was 

appropriate since the aim was not to 

use fibers with too small average fiber 

diameter. 

Sample 10, 11, 13 have an average 

diameter of 5.50, 7.47 and 7.19  103 

nm. Therefore, Sample 10, 11 and 13 

was chosen as the template for 

monolith preparation. The process 

parameters used to condition Sample 

10, 11 and 13 are shown in Table 2 and 

later denoted as A, B and C. 

 

3.6 PPNF-Monolith Observation 

and Characterization  

 

3.6.1 Physical Observation of PPNF 

– Monolith Preparation 

 

The structure of the PPNF and 

monolith before and after sintering in a 

furnace at 130 ˚C for 30 minutes are 

shown in Figure 3. After sintering, the 
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top of the monolith structure shows 

cracks. This may due to the heat 

produced from the melted PPNFs. 

Additionally, the melted PPNFs may 

not able to be fully flushed out from 

the monolith structure causing it to 

remain in the structure as clogs.  

In addition, Samples A and B break 

into two after sintering, which 

indicates that they are very fragile 

compared to Sample C. Sample C was 

hard and retained its solid structure 

after sintering. This might be due to 

the PPNF distribution in monolith 

solution. The PPNF may not be 

completely soaked in the monolith 

solution since the PPNFs has chemical 

resistance to a certain degree, causing 

it to unevenly distributed inside the 

monolith solution [23] therefore 

having effect on its mechanical 

strength. 

  

   

   
A B C 

 
Figure 3 Nanofiber-monolith samples before sintering (top) and after sintering (bottom) 

 

  
A B 

  
C Control 

Figure 4 SEM images for samples of monolith for Sample A-C and control sample after the 

sintering process 
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3.6.2 Morphological Study of PPNF 

– Monolith by SEM  

 

A morphological study on the 

GMA/EDMA monolith for Sample A 

shown in Figure 4 (A) indicates that 

the pore distribution is difficult to see 

as no pores was formed or the pores 

are too small compared to the control 

sample in Figure 4 (C) where the pores 

are clear and detectable.  

Similarly, for Sample B, shown in 

Figure 4 (B) the pore distribution was 

difficult to notice as the pores are too 

small and the arrangement of particles 

is more compact compared to Sample 

A, C and control as shown in Figure 4. 

This may due to there was no reaction 

take place during the sintering process.  

A normal pore morphology of 

polymethacrylate monoliths is 

characterized by interconnected 

globules that are partly aggregated [25] 

as shown in the control sample.  

The structure of Sample C is almost 

similar to the control sample. However, 

some solid chunks of PP occurred at 

various points of the monolith, which 

may due also to the PP melt was 

unable to flow out through the 

monolith structure during the sintering 

process. Here a higher sintering 

temperature may be required to totally 

flush out the PP melt during the 

sintering process or a longer sintering 

time may be applied.  

It can be said that Sample C is more 

likely formed pores in the monolith 

structure compared other Sample A 

and B. Moreover, Sample C is more 

rigid in structure where the other two 

are more fragile. Therefore, Sample C 

is suitable as a template for the 

monolith.  

 

 

4.0 CONCLUSION  

 
Melt blowing technique was used to 

produce PPNF by tuning the process  

parameter such as air pressure, 

polymer flowrate and die-to-collector 

distance in the ranges of 0.15 to 0.3 

MPa, 15 to 30 Hz and 0.2 to 0.6 m 

respectively. The PPNF average fiber 

diameter obtained were in the range of 

5 to 14  103 nm with melting points 

were in the range of 120 ˚C to 130 ˚C. 

PPNF conditioned at 0.22 MPa; 22.5 

Hz and 0.4 m show the potential as a 

template for the fabrication of the 

monolith with uniform pores.  
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